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Abstract

-The H-function is the most general special function,

encompassing as specific cases many mathematical functions

and nearly every continuous statistical distribution defined

over positive x. A general procedure is developed to esti-

mate the parameters of the H-function which gives the best

fit to a set of data. The technique creates a system of

nonlinear equations from the method of moments and uses

Powell's quasi-Newton hybrid algorithm to solve the equa-

tions. A computer program, which can accept both raw data

or previously calculated moments, implements the general

process. Several new theoretical results are also

presented.
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AN APPLICATION OF THE H-FUNCTION

TO CURVE-FITTING AND DENSITY ESTIMATION

I Introduction

Analysts cannot effectively work with raw data. Before

--statistical analysis can be accomplished, data must be sum-

marized in a convenient form. The most common way of

achieving this is to fit data with the best function or

statistical distribution. For example, if the analyst wants

to model the time between arrivals to a queue for a computer

simulation, he infers the true probability distribution from

a random sample of observations. This process of statis-

, tical inference usually involves estimating both the form

and the parameters of the distribution. Only after the best

form has been found can the analyst begin to use standard

*statistical tools such as confidence intervals and

hypothesis tests.

Background

Currently, analysts use the following procedure when

attempting to fit mathematical functions or statistical

distributions to data:

* 1. Plot the data,

2. Hypothesize a particular type of function,

3. Estimate the parameters, and

4. Test for goodness-of-fit using an appropriate test.
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This procedure has two major shortcomings. First, the ana-

lyst must test each specific function separately. For exam-

ple, one must perform two individual tests if the data is

suspected of being from either a gamma distribution or a

half-normal distribution. Second, several distributional

forms and many combinations of parameters may f1'- the data.

In the same example, if both goodness-of-fit t its fail to

reject the hypothesized distribution, then ne her can be

eliminated as the true population distributio Further-

more, there is no chance of finding the distribution which

best fits the data unless all possible distributions are

tested.

To solve these problems, analysts can use a general

special function, called the H-function, because it includes

many mathematical functions and statistical distributions as

special cases. An analyst could simultaneously consider the

special cases by simply fitting the H-function to the data.

Although this idea seems logical, the H-function has never

been applied to the current procedure for curve-fitting

because of the newness and difficulty of the H-function

theory.

Objective

The theory has progressed enough for an application of

the H-function. Special theorems allow the application to

curve-fitting without a full understanding of the complex H-

function theory. Therefore, the overall objective of this

2
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research is to develop an efficient and effective method to

apply the H-function to the current procedure for curve-

fitting and density estimation. To reach this objective,

two main goals need to be accomplished.

First, a method of estimating the parameters of the H-

function has to be found. The parameters uniquely define

the H-function and therefore, with knowledge of the param-

eters, the H-function can be explicitly evaluated and

graphed.

At this time, a subtlety needs to be discussed. The

analyst may also know that the data comes from a statistical

distribution. Because the method estimates parameters based

on a finite number of data points, the parameters that

appear in the H-function may not exactly define a statisti-

cal distribution. For example, a pa'rameter required to be 1

A
4  

for a chi-square distribution may be 1.01 when estimated.

The other estimates may also be slightly off.

However, the estimates do not need to be reevaluated.

The H-function found will fit the data better than any

forced chi-square distribution. If necessary, the analyst

should think of the unnamed H-function as a nearly chi-

square distribution and proceed with further analysis given

this new information.

The second main goal is to determine the efficiency and

effectiveness of the H-function curve-fitting procedure.

This part of the research is somewhat subjective as can be

3



seen from the following definitions of efficiency and

effectiveness.

Efficiency is measured in terms of not only the number.

of separate tests required, but also the difficulty of each

test. Because the H-function is a general function, the

application of the H-function reduces the number of separate

tests required. Since the H-function method can be imple-

mented on the computer, curve-fitting will not be difficult.

Therefore, the new technique should be efficient.

Effectiveness is measured in terms of the ability of

the method to find the "best" function. Analysts have many

techniques they use to compare functions in order to deter-

mine which one "best" fits the data. All involve some

measure of the error between the proposed function and the

data. Examples include the absolute distance, the maximum

absolute distance, and the square of the distance. Because

of its common use, the estimated mean squared error will be

our criterion for measuring the closeness of the H-function

to the data. A more formal definition follows in Chapter 6.

Three of the problems which influence effectiveness are
the sensitivity to the number of data points, the inaccuracy

of higher degree moments, and the necessity for an initial

guess of the parameters. The size of the sample is a prob-

lem for all statistical methods. For the more common cases,

only four to six moments have to be found. The third prob-

lem, involving the initial guess, can be controlled by

,.4



checking it against a set of H-function convergence condi-

tions. Effectivenes. should increase because the nonlinear

solution method results in accurate convergence most of the

time.

Scope

The H-function is only applicable for continuous func-

tions defined over positive values of x. This is not as

serious a restriction as it first appears. Methods exist

which can fold a symmetric distribution and move its axis of

symmetry. Therefore, distributions like a normal or Stu-

dent's t can be evaluated with '-ie H-function as half-normal

or half-student. Such transformations are not the subject

of this thesis. Distributions such as the half-normal will

only be analyzed directly.

The H-function also can be designated with a certain
'"
.r order. Order is defined as the sum of the number of gamma

terms in the definition of the H-function. This definition

will be seen later in Chapter 2. For programming purposes,

the highest order covered in this effort is five. Again,

this is not a serious restriction. In fact, most known

statistical distributions can be described by an H-function

with order one or two. For more advanced mathematical

functions such as arcsin or arctanh, the H-function still

only needs to be of order four.

5



Overview

Chapter 2 contains a general discussion of the H-

function including the definition, some special properties,

and many special cases. A deliberate attempt is made to

I.? avoid discussion of as much of the complex theory as

possible.

Chapter 3 presents the results of the curve-fitting

literature review. It concludes with the selection of the

appropriate parametric curve-fitting method to use with the

H-function, the method of moments.

The method of moments produces a system of nonlinear

equations that needs to be solved. The system is nonlinear

because each equation involves products and quotients of

gamma functions where the unknowns are in the arguments. In

Chapter 4, a historical survey of nonlinear solution tech-

V niques is given. The technique known as M.J.D. Powell's

hybrid algorithm is selected. This algorithm is already

available on the AFIT CDC Cyber 750 computer in an IMSL

routine called ZSPOW.

Chapter 5 discusses the development of a computer pro-

gram that accomplishes the main objective of the research.

The program estimates the parameters of the H-function from

- a set of univariate data or paired data after the data has

been converted to moments. Once the parameters are esti-

mated, the H-function can be explicitly evaluated and

graphed. The H-function is evaluated by placing the

6



estimated parameters into a program which has the capability

of determining the value of the H-function for any x > 0

[7:Appendix B3. The H-function will be evaluated at the

same x values as the data points. This will be the longest

chapter since it summarizes the complete methodology of the

4 thesis ef fort.

Chapter 6 describes graphs which contain the estimated

H-function, the actual data points, and the measure of the

fit of the H-function to the data. Also, this chapter

summarizes the measure of fit for each graph in tabular

form.

Finally, we reach conclusions about the efficiency and

effectiveness of the H-function curve-fitting procedure.

Also in the final chapter, new findings are highlighted and

further studies are recommended.

7



II The H-function

Definition

The H-function is the most general special function,

encompassing as special cases most of the other special

functions and elementary functions of mathematics and nearly

every continuous statistical distribution defined over

positive x.

The H-function is defined by either of the two forms:

m n
H(z) = H Ez:(ai,Ai)}, i=l,...,p;

p q

[(bj, Bj)}, j=l,#..ql

m nf r r' (bj+Bjs) TT F(l-ai-Ais)
= j= i=l z -s ds

p q

1 T F(ai+Ais) T-T F(l-bj-Bjs)
i=n+l j=m+l

(2.1)
m n
17 T r(b j-B j ) 7'' r-(l-ai+Ais)z 5 d

1 j=l iq 1 zs ds

2 7T r(ai-Ais) 1-T F(l-bj+Bjs)
i=n+l j=m+l

where z and all ai and bj are real or complex numbers, all

Ai and Bj are positive real numbers, and m, n, p, and q are

integers such that Omq and Onp. Empty products are

defined to be unity (1). The path of integration, C1 , is a

contour in the complex s-plane from w-im to w+iw , such

m
that all Left Half-Plane (LHP) poles of TT r(b+Bjs) lie

8



to the left of C1 and all Right Half-Plane (RHP) poles of

n
-TF(l-ai - Ais) lie to the right. Similarly, C2 is a

i=l

contour running from v-ica to v+i , such that all RHP poles

m
of TT r (bj - Bjs) lie to the right of C2 and all LHP

j=l

n
poles of '-rF(l-ai + Ais) lie to the left (26:2-3; 37:195;

i=l

7:32).

We will use the first equation in Eq (2.1) as our

definition, although the two definitions are equivalent.

When there is little chance of confusion, we will often

abbreviate the H-function as either

m n m n

H (z) or H n Ez:[(ai, Ai)); {(bj, Bj)}].
4p q P q

We will define the order of an H-function as p+q. This

represents the number of pairs of parameters [(ai , Ai)} and

[(bj, Bj)) where each pair represents a gamma function in

the integrand in Eq (2.1).

Convergence Conditions

For our purposes, the H-function defined in Eq (2.1) is

valid if (26:3; 7:72):

D Ai +l j.1 - Ai >0

9

,r '' ' r -. - - *: ", '" "''" *5-'* ' "' " """"- - ;"i .,.,. .,-..-.''.',.



log -Jv-. A - ~-

and a C1 line can be placed between the LHP and RHP poles.

More stringent conditions are developed later in Chapter 5

when D=O. When D<O, the H-function is not defined because

the infinite sum which can represent it does not converge.

Properties

Although we will rarely use the following properties in

this thesis, we will state them for the reader's future use

(37:196; 26:4; 7:33-34):

Reciprocal Property.

H p q :f(a i , Ai)); ((be , Bj)}]p q

n m
= H [z:1[(-bj, Be)); 1(1-ai, Ai))]

qp

Argument to a Power Property.

SH p [ zC:I(ai , Aill,- I(bj, Bj)}]

1 m n AiC Hp Ez'Ua i , -A)}; l(bj,-j)), where c>O

n m B. Ai= - H Ez:[(l-bj, -j1; [(l-ai, -- )I],
c cq p

where c<0

Multiplication by an Argument to a Power Property.

m n

zc H [z:[(a i , Ai)); [(bit Bj))]

10
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mn
= H z:[(ai+Aic, Ai)); [(bj+Bjc, Bj))]

Reduction Property.

If a pair of "A" terms and a pair of "B" terms in an H-

function are identical and one is in the numerator and the

other is in the denominator, then it is equivalent to an H-

function with a lower order. Specifically (26:4; 7:34-35):

m n
H Ez:f(ai,Ai)); (bl,Bl), ... , (bq-lBql), (al,Al)]
p q

m n-l
Hpl q 1 [z:(a2,A2), ... , (a,Ap); [(b j,Bj)}]

provided n>0 and q>m.

m n
Hp q Cz:(al,Ai), ..., (piAi), (bl,B1 ); [(bj,Bj))]

m-l n
H q z:U(ai,Ai)); (b2 ,B2 ), ..., (bq,Bq)]p-i q-liq

provided m>O and p>n.

We also found another way in which the H-function can

reduce to one of lower order. If any Ai or Bj is close

enough to zero, that gamma term in the integrand of Eq (2.1)

is essentially a constant. Thus,

, 11



m n m-i n
H [z] Zr(bI ) H [z:[(ai,Ai)); (b2 ,B2 ),

p q p q-i

..., (bq,Bq )]

for BIzO and m>_.

m n m n
Hq[z] Z (lbq) Hp qz:(ai,Ai)); (bIB I),

"-,(T~T - (bqjiBq))]

for Bq:O and mnq.

m n m n-i

H pq[z) (l-a I ) H [z:(a 2,A 2), ... , ( ,Ap);

p q p-i q

[(bj,Bj)}]

for Ap ZO and n<p.

Therefore, there are two ways in which the H-function

can reduce to a lower order. Gamma terms in the integrand

of Eq (2.1) could cancel in the numerator and denominator or

they could reduce to constants. These reduction properties

*could be useful in allowing a less restrictive assumption of

the values of m, n, p, and q when fitting the H-function to

data.

12
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Special Cases

Integral Transforms.

The Laplace (Lr) and Fourier (Ft) transforms of an H-

function are also H-functions (37:199-201; 7:35):

m n
Lr H (cz)

p q

m n+l
- 1 H [2 :(0,1),[(ai, Ai)); ((bj, Bj))]
r p+l q r

Using the property of multiplication by an argument to a

power, this becomes:

m n+1

= Hp q [.E:(1,1),(ai+Ai , Ai)i; [(bj+Bj, Bj)I}c p+l q r

By the reciprocal property, this can be rewritten as:

1 Hlm [.E:[(1-bj-Bj, Bj)); (0,1), ((l-ai-A i , Ai)))C q p+l c

m n
, Ft H (cz)

p Pq

n+1 m

. H p C-it:[(l-bj-Bj, Bj)); (0,1), [(l-ai-A i, Ai))]c q p+lc

Mathematical Functions.

The following elementary mathematical functions can be

expressed as H-functions (26:10,151-152; 7:39-41,124):

13.4
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1 0
e = H z: ;(0,l)1

0 1

=b- £i z:;(b,1)]
0 1

b 1 1

z B e-Z =H [z:;(b,B)]
B 0

10

z= H 1 Ez:(b+1,1); (b,1)]

1 1

zb (lz)+a F (a+1) H Cz:(a+i'+1,1); (b,1)]

1 1

zb (l+z)-a 1 H Ez:(b-a+1,1); (b,1)]

Cr H1 0 _.:; f -sin (2)=. .( ) (0,1))
2 0 2 2 222

1 0
sinh(z) =-if H E :(i),(0,1)

2 0 2 2 2 2 2

cos (z) =f H [s: ;(0 1) , (.1,1))1
2 02 2 2 2 2

1 0
cosh (z) H [.L2..:(0' ~

2 0 2 2' 2 2 2

1 2
arcsin(z) - -H £iz:(1,I'), (1,1). (1,1), (0,1)]

2 2 2 2 2 2 2

1 2
4.-arcsinh(z) - H Ez:(1,I), (1,.!). ,) (0,1)]

44W 2 2 2 2 2 2 2

1 2
4 ~~arctan(z) -1H Ez*(1 1!), (,) 11,(,)

2 2 2 2 2 2 2

14
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12

arctanh(z) = H [iz:(1,1) (1,1) (1,1) (0,1))4! 2 2 2) 2 2 2 2 '

12
log(l±z) = H [±z:(1,1), (1,1); (1,1), (0,1))

22

20
log(z) = - z:(1,1), (1,1); (0,1), (0,1)] O<z~l

2 2

H [z:(1,1), (111); (011), (011)] z>l
22

It should be noted that the formulas given above are

a- not consistent with those in Mathai and Saxena for arc-

sin(z), arctanh(z), and log(lt z). There were apparently

typographical errors in their book. We believe that the

correct formulas are given above. We verified these as the

correct formulas by summing the residues of the H-functions

given above. In each case we obtained the correct infinite

series. The outlines of these proofs are provided in

Appendix A.

We were able to prove a generalization to the loga-

rithmic function log(z). It is given below and the proof is

outlined in Appendix A.

20
log(z) = 2  0 z(1,u), (l,u); (0,u), (0,u) O<z~l

2 2

[z(l,u), (1,u); (0,u), (0,u) zlI~ 2

15



A similar generalization applies to the power function

" Zb"b- It is stated below and the proof is a special case of

the proof for the generalization of the Power Function

probability density function (p.d.f.) in Appendix A.

"- - 10

zb = uH [z:(ub+l,u); (ub,u)]

The H-function also includes as special cases many

advanced mathematical functions. Since these will not be

dealt with in this thesis, they are provided for the

reader's benefit in Appendix B.

Statistical Distributions.

Consider a continuous random variable X whose

probability density function (p.d.f.) is given by

mn
fx(x) = k H (cx) cx E S

p q

0 otherwise

where k and c are constants such that fx(x) dx = 1 and

m n
S is a subset of the positive real line for which H (cx)

p q

is convergent. Then the random variable X is said to be an

H-function variate or a random variable with an H-function

distribution (37:200; 7:84).

Many common statistical distributions are special cases

of the H-function distribution. These include (37:164, 202-

207; 7:85-87,93-94):

16
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Gamma p.d.f.

flxj@,0) - 8-1 e-OX

-0 H 1 Ox:;(9-1,1)) x > 0

0,0 > 0

Exponential p.d.f. (Gamma p.d.f. with e 1)

(Weibull p.d.f. with a 1)

f(xIO) = eO

1 0
= OH [Oxu;(0,1)] x > 0

0 1
0 >0

Chi-Square p.d.f. (Gamma p.d.f. with 9 and 0 = 1)
2 2

* ~f(xIQ') = £22 [()]1x e 2
* 2

10

Weibull p.d.f.

f(xle,0) = eoxel1 e-Ox

1 1 0 1
= 0 e H Eoex:;,-(1-1,1)]3 x > 0

0 1 ee

17
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* -Rayleigh p.d.f. (Weibull p.d.f. with 8 2)

2
f(x10) = 203x e

1 0
=10 [4x:(1 1) x > 0

0 1 2 2

* Maxwell p.d.f.

f(xle) 4 ~~ x2 e e9

1 0
2 . H E3%;(igI)] x > 0

Half-Normal p.d.f.

f(xle) = 2 e 292

- 1 H £ LX: (0 1) x >0
01O0 1 #429'

e > 0

Beta p.d.f. of the first kind

f(x19,0) =F(e+0) xe-l (1-X) 0 'l

1 0
F [(9+0) H Ex:(e+o-i,1); (e-1,1))

F'(e) 11i

18



Power Function p.d.f. (Beta p.d.f. with 0 =1

f(x19) = e1

1 0
= 9H x:e1;(9-1,1)J 0 <x <C

Uniform p.d.f. (Beta p.d.f. with 9 = 0 =1)

(Power Function p.d.f. with e 1)

f(x) =1

-H Ex:(1,1); (0,1)] 0 < x <C 1

Half-Cauchy p.d.f.

f~xle) -29

11 [25:(0 1) (0,1) x > 0
91.9 2 2

> 0

Half-Student p.d.f.

f(XIO) 2 2 ~

2 2

2

fj; jg 2 2 2

N. 19



,WV. F p.d.f.

8+ 0 _-

f(xI9,) = O 2 O2 x 2

F(2) r( ) (ex+)
2 2-

H El2x:(-., 1)* (e.1J4)] x > 0
r()e 1 1 0 2 2

G, 0 > 0

'n

Beta p.d.f. of the second kind

f(xIe0) = (0/) r(e+0) xe- +
,(e) [-(0) (1+ 0x)

9

0 H 1 E-x:(-O'l); (e-i,1)]' x > 0
er(e)F() 1 1 0

e, 0 > 0

These results are summarized in Table I (8:300).

We were able to prove a generalization to the above

formulas for the Power Function p.d.f. and the Uniform

p.d.f. This generalization was not previously known and the

proofs are outlined in Appendix A.

Power Function p.d.f.

f(xle) =exe-

1 0
= ueH Lx:(u(e-l)+l,u); (u(e-l),u)] 0 < x < 1

%'. 11
9,u > 0

20

% % *'* *%2"~.V .~~V ... -



9.P.-

- - IN. -4 -
4J ..- r- .-41C !~ %- %- ~

.0~~~( I r4e r-04 0 0N
+9 .. o 1.0 -.- 0" 9

00

N4 r-4

ri r4 (D I- I " 4 . - 4I"'

$r 4 + ' 94 '-

r-f r-4

0

.9- -94 f4(

4IuN ( - c4

fa- I- I.
$4q r4-4 In ( D -4 -4 -4 (D- '. -

4J, C4 (D

04 0 0 0 0 0 4 4 -4 r- -4 P-4 -4

4)q 
4.4)

0 r-4 4J 4 >1 Lc

'-a- V 1-r--4 Z$4 u

41 0- 1- -4 -4 -- 4 4-4 -4 -4 -4 -4 -44 - -

0 01 0 -4 -3 - 4 r-4 -4 41
to 0 0 0 0 0 00 0 c -(0 g

w ' gr.

2 - ~4 ~ ' 4 -4 e-4 ,4 ,4 v. e -2-



- - --

Uniform p.d.f. (Power Function p.d.f. with @ = 1)

f(x) = 1

*~ 10
= uH Ex:(l,u); (O,u)) 0 < x 4 1

u > 0

We were also able to represent the Pareto p.d.f. as an

H-function. This is another new finding not previously

known. Again, the proof is outlined in Appendix A.

Pareto p.d.f.

f(xle) = exe -

0 1
= eH Ex:(-e,1); (-e-l,l,) x > 1

e > 0

This p.d.f. can also be generalized as above. The

proof of the result is given in Appendix A.

Pareto p.d.f.

f(xle) = ex-9
-I

0 1
= uGH [x:(l-u(i+G),u); (-u(1+G),u)] x > 1

1 1
9,u > 0

%.,

dThe Bessell p.d.f. and General Hypergeometric p.d.f.

can also be expressed as H-functions. These are listed in

Appendix B since we won't use them in this thesis. However,

we will use the Bessel p.d.f. to verify and validate our

computer program.

22
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If a random variable has a p.d.f. that can be expressed

as an H-function distribution, then its cumulative distribu-

tion function (c.d.f.) can be easily written as one minus

another H-function. Specifically, if

m n
f(x) = k H [cx:[(a i , Ai)); [(bj, Bj)],

.. .. pq J

then (37:243; 7:102-107):

: m+ 1 n

F(x) = 1 - k H + n [cx:[(ai+Ai , Ai)], (1,1); (0,1),"': c p+l q+l

4. .% wn[ (bj+Bj, Bj)})]

Another powerful characteristic of H-function variates

is that products, quotients, and rational powers of indepen-

dent H-function variates are also random variables with H-

function distributions. The exact formulas are lengthy and
- will not be presented here. The reader is referred to

Springer (37:207-219) or Cook (7:90-92). In his disserta-

tion, Cook presented a computer program that will evaluate

these combinations and graph the p.d.f. and c.d.f. of the

resulting H-function distribution.

Mellin Transformation and Moments

The Mellin transform (Ms ) of an H-function is given as

(37:198-199; 7:35):

23
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m n

7-r (bj + Bjs) 7 (l-ai - Ais)
Ms[H(cx)j _j=i i=l c- s

p q
7 -r(ai + Ais) 7r F(l-bj - Bjs)

i-n+l =m+l

For continuous random variables defined over positive x, the

moments about the origin are (37:201-202; 7:29,108-109):

Or = E(Xr) = f xrf(x)dx
0

= Mr+lf(x))

Therefore, the moments of the H-function distribution are:

m n m n
Or = M r+l [kH (cx)) = kMr+1 (H (cx)} = k I(r+l)

p q p q cr+ l

r=O, 1,...

where

m n
Ts r (bj + Bjs) -T r(l-a i - Ais)

I(S) j=1 i=1
p q

7T r(ai + Ais) i-r F(l-bj - Bjs)
i=n+l j=m+l

The above formula is especially useful for finding the

constant k in an H-function distribution. Using the fact

that the zeroth moment of a statistical distribution must

equal one,

m n

P0 - 1 = M1 tkH (cx)) = kI(1)
p q

24
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or (7:109):

p q
-T r(a i + Ai) TT r(l-bj - Bj)

k c = c i-n+l ]=m+l
1(1) m n

TT [-(b9 + Bj) TT r(1-ai - Ai)
j=1 i=l

The moments of H-function distributions carry their

usual statistical meaning. For example, the zeroth moment

is the area under the p.d.f. over the appropriate range.

The first moment is the mean of the distribution. The

second moment is a function of the mean and variance of the

distribution.

We could also define moments of a mathematical function

f(x) defined over positive x as:

Pr = f xr f(x) dx (2.2)

When the function can be represented as an H-function, these

moments could be found by the same formula as for statisti-

cal distributions. However, they would not always have the

statistical meaning. The first moment of a function could

not always be interpreted as the mean or balance point of

that function. The definition in Eq (2.2) will be useful in

Chapter 5 when we fit mathematical functions to data using

the method of moments.V.'

This concludes our discussion of the definition, prop-

erties, special cases, and moments of the H-function. We

25
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next examine procedures to estimate the parameters of the H-

function. Because the H-function includes both mathematical

functions and statistical distributions as special cases, we

needed to find a method of estimating the parameters of the

H-function that would be applicable for both curve-fitting

and density estimation. Nearly every method we found was

formulated for density estimation, although some could also

be applied to curve-fitting.

It appears that when trying to fit mathematical func-

tions to data, analysts usually plot the data points and

hope to find a pattern in the points that is recognizable as

a special mathematical function. If the points do not

exhibit a pattern, the analysts could still approximate the

n data points with a polynomial of order 0 to order n-1.

Because of the lack of techniques for fitting mathema-

tical functions to data and the abundance of techniques for

density estimation, we concentrated our literature review on

methods of density estimation. As noted previously, in some

cases, these methods may also be used to fit mathematical

functions to data.

926
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III Methods of Density Estimation

Methods of probability density estimation can be gener-

ally classified as parametric or nonparametric. Parametric

density estimation techniques usually assume that the form

of the distribution from which the data were taken is known.

Alternatively, they may estimate the form or class of the

probability density function (p.d.f.) from the data. In

contrast, nonparametric density estimation techniques are

not concerned with the form of the distribution, before or

after the data are taken.

Generalized Families

Although parametric approaches generally require an

assumption of the form of the unknown p.d.f., that assump-

tion is not always as restrictive as it appears. There are

several generalized families which include many density

functions as special cases. Assuming that the sample came

from a generalized family is not nearly as restrictive as

assuming it came from a particular distribution.
The emphasis in the generalized approach is to leave

the functional form of the unknown density as unspecified as

possible and allow the data to indicate which special case

of the family gives the best fit (41:13). This approach

permits model and parameter estimation to be considered

simultaneously. This seems to be beneficial because of the

close relationship between a model and its parameters

(12:1).

27
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One of the best-known generalized families was proposed

by Karl Pearson. This family, as it turned out, included

many of the more common continuous univariate probability

N?, densities as members (41:5).

Pearson's system of frequency curves is generated by

solutions to the differential equation

y = x+a y

bo+b1 x+b2 x
2

where a and the b's are constants (9:248-249; 37:255). The

system consists of 12 types of curves and a set of rules for

determining which curve best fits the data based on the

first four moments (37:255). A fairly detailed development

of the system is given by Elderton (13:38-127).

Special cases of the Pearson system of curves include

.the normal distribution, the chi-square distribution, Stu-

dent's t distribution, the beta distributions (first and

second kinds), and the Pareto distribution (9:249; 41:8).

The gamma distribution can also be obtained after shifting

the origin and making a transformation (41:9).

Another generalized family is the generalized gamma

family defined by Stacy (38). It consists of probability

density functions of the form:

f(xla,d,p) = (a xd-1 p

28
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where a, d, and p are parameters. This family includes the

gamma, Weibull, Maxwell, and standard normal distributions

as special cases (38:1187). Of course, the exponential and

chi-squared distributions are also included in the family

since they are special cases of the gamma distribution.

Similarly, the Rayleigh distribution, a special case of the

Weibull distribution, is also in the generalized gamma fam-

ily. This family is equivalent to the first order H-

function distribution kH (cx).
0 1

Recently, Ramberg et al (33) proposed a four-parameter

probability distribution whose percentile function R(p) is

based on the generalization of Tukey's lambda function:

1 3 A2

The density functions related to this percentile function

can take on a variety of shapes, depending on the values of

the Xi .  This distribution can represent, or at least

approximate, the gamma, Weibull, normal, log-normal, and

Student's t distributions (33:203, 206). The proposed dis-

tribution yields a good approximation to the data using the

first four moments.

Clearly, the H-function is also a generalized family

since it includes as special cases nearly every named con-

tinuous probability density defined over positive x. The

29



only named continuous densities that have not been shown to

be H-functions are the log-normal and logistic distribu-

tions. On the other hand, no one has been able to show that

these distributions are not H-functions.

As seen in Chapter 2 and Appendix B, the H-function

also includes many named functions of mathematics as special

cases. Thus, the assumption that the data came from an H-

function could hardly be considered restrictive.

Still, that assumption makes fitting an H-function to

data a parametric procedure. In this case, the assumed form

of the distribution is an H-function with particular values

for m, n, p, and q. Estimating the parameters of that H-

function would simultaneously consider all of the densities

which are special cases of the H-function and determine the

H-function which best fits the data.

Parametric Estimation Techniques

Since the form of the distribution is assumed to be

known in parametric density estimation approaches, the prob-

lem reduces to finding point estimates for the parameters of

the p.d.f. Before discussing the various approaches to

parameter estimation, however, we need to define certain

desirable properties of estimators.

An estimate, e, of an unknown parameter, 9, is said to

be unbiased if E(e)=e for all 9. "This implies that the

sampling distribution of a is centered at the parameter 9.

30
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That is, an unbiased estimator e is equal to E on the

average" (3:388).

If the estimate 9 converges in probability to G, it is

said to be consistent. Formally, if lim Pr{Ie-ej<k=l for
-. ',-n-*0

any E>O, then 9 is a consistent estimate of 9 (18:235-236).

Consistent estimators are not necessarily unbiased and

unbiased estimators are not necessarily consistent. Thus,

neither property implies the other. But a consistent esti-

mator with a finite mean value must tend to be unbiased in

large samples (23:5).

An efficient estimator of e is an unbiased estimator

with minimum variance among all unbiased estimators. A

measure of the efficiency of the estimator ea is

efficiency = V()
V(9a)

where V(9) is the minimum variance of all unbiased esti-

mators and V(9a) is the variance of ea" "An efficient

estimator is sometimes called a minimum variance unbiased

estimator" (3:388). An asymptotically efficient estimator

is an estimator that becomes efficient as the sample size

increases to infinity.

With these properties defined, we can proceed to

discuss the various approaches to parameter estimation.
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-' Method of Moments.

The method of moments was proposed by Karl Pearson to

approximate data with a curve. This method involves

equating the moments of the data with the moments of the

- distribution, creating as many equations as there are param-

eters to be estimated. The estimates are then obtained by

solving these equations for the parameters (9:497-498;

13:12-37; 29:274-276). "This method often leads to

comparatively simple computations in practice" (9:497).

However, one limitation of the method of moments is the

- unstable nature of the higher moments calculated from the

data. If there are many unknown parameters, then higher

order moments will be required to solve for the parameters.

Karl Pearson has shown that "we might
easily on a random sample reach a 7th or
8th moment having half or double the
value it actually has in the general
population. Constants based on these
high moments will be practically idly.
They may enable us to describe closely
an individual random sample but no safe
argument can be drawn from this
individual sample as to the general
population at large, at any rate so far
as the argument is based on the
constants depending on these high
moments" (13:44).

V,.

•9. This limitation led to the development of equations to

correct the raw or grouped moments (9:360-362).

Another concern with the method of moments is the

question of whether a finite number of moments can uniquely

determine the distribution. Although there is a one-to-one

32
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correspondence between the moment generating function and

the distribution, unless the moment generating function is

known, the moments, in general, do not uniquely determine

the distribution function. This concern is referred to as

the problem of moments (29:81).

Although estimates obtained with the method of moments

are sometimes biased, we can often remove the bias with a

simple correction and thus obtain an unbiased estimate

(9:498). "In general, these estimates are consistent"

(3:389). However, the asymptotic efficiency of the esti-

mates is often considerably less than 1, which implies that

they are not the "best" possible estimates from the

efficiency point of view (9:498).

Method of Maximum Likelihood.

The concept of maximum likelihood was first introduced

by R. A. Fisher in 1912 and applied to parameter estimation

in 1921 (9:498).

There are two crucial assumptions of the method of

maximum likelihood. First, the correct form of the equation

must be known or assumed. Second, the data must be a repre-

• ": sentative sample from the whole range of situations about
.4a

which the analyst wishes to generalize (10:7). The second

assumption is common to all methods of density estimation.

The first assumption, however, is characteristic only of

parametric estimation techniques, although some parametric

techniques allow a less restrictive assumption of the form

'33" " 33
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of the equation than others. This point was emphasized

earlier in this chapter.

The method of maximum likelihood consists of deter-

J. mining the values el,9 2,...,ek which maximize the likelihood

function with respect to 9l,...,@k. The likelihood function

is defined as:

n
L =T7 f(xilel,...,ek)

i=l

where f(xilel,...,ek) is the p.d.f. of X1 . This is equiv-

alent to maximizing log L with respect to 9 1,...'ek since

both L and log L are maximized at the same value. This is

useful since log L is sometimes easier to maximize than L.

To maximize the likelihood function, an analyst usually

differentiates L (or log L) with respect to each of the

unknown parameters l,...,ek. These derivatives are then

set equal to zero and the resulting system of equations is

solved for 9l,...,ek. The solutions to these equations are

the maximum likelihood estimators (23:35-74; 27:183-186).

The primary difficulty with this method is that the system

of equations often cannot be solved directly and the

constants have to be found by r, erical approximation

* (13:252).

Still, under some general conditions, maximum likeli-

hood estimators are consistent, asymptotically normal, and

asymptotically efficient (3:389). Although the estimates
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are not necessarily unbiased, many times they can be modi-

fied so that they become unbiased (28:186). For these

reasons, the method of maximum likelihood is the most widely

used density estimation technique (41:13).

Method of Least Squares.

Another popular technique for fitting curves to data is

the method of least squares. This method involves finding

the constants of the assumed equation which minimize the

square of the differences between the actual data values and

the values predicted by the equation (23:75-91; 29:482-502).

Linear least squares is a well-developed technique that

can be applied to any form of equation that can be refor-

mulated through transformations into another equation that

is linear in its coefficients. Daniel and Wood (10:19-23)

suggest appropriate transformations to transform quite a few

nonlinear equations into a model that is linear in its

coefficients.

Nonlinear least squares estimation is a relatively new

area developed to accomodate models which cannot be made

linear through transformations. Several methods are avail-

able which use numerical techniques such as Gauss-Newton or

steepest-descent to converge on a solution (10:9-10).

For the simple linear model and when general assump-

tions are made, the Gauss-Markov theorem states that the

least squares estimators are the best (i.e. minimum vari-

ance) linear unbiased estimators of the unknown coefficients
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in the model. Further, when the random errors in the model

are normally distributed, the least squares estimates are

maximum likelihood estimates and are of minimum possible

variance (10:7).

Other Methods.

In the minimum chi-square method, the observations are

grouped into c intervals and the values el,...,ek are found

which minimize

c

x2 Eni - npi (el,...,ek)]2

npi ( , , k)
i1 k

where ni is the actual number of observations in interval i

and npi(el,...,ek) is the predicted number of observations

in the interval, regarded as a function of 9l,...,9 k

(3:389). The asymptotic properties of minimum chi-square

estimators are similar to those of maximum likelihood esti-

mators (23:93). But as with some previously mentioned tech-

niques, the equations are usually too difficult to be solved

analytically and a numerical technique must be used. Fur-

ther, the observations must be grouped, even when dealing

with a continuous distribution, and it seems rather wasteful

to impose an otherwise unnecessary grouping for estimation

.. . purposes (23:93).

In Bayesian statistics, e is not regarded as an unknown

constant, but as a random variable. Thus, it has a
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S"probability density function, although this p.d.f. is

unknown. The objective in Bayesian estimation is to combine

any prior information about the distribution of e with the

random sample before estimating 9. Bayes' method is well

formulated for a single 9. It involves multivariate dis-

tributions of 9 1,..., 9k when a vector of parameters is

considered.

If g(e) is the p.d.f. of the parameter which expresses

,4 the prior information about 9 and

n
f(xl,''',XnI9) = i-l f(xile)

is the joint p.d.f. of Xl,...,Xn , given 9, then the

posterior p.d.f. of 9, given the random sample, is

h(elxl,...,x) g(G) f(xl,...,xn1I )S." n fg(e) f(xl, ..., xn le ) de

where the integration is performed over the possible values

of 9. The posterior p.d.f. of e represents the current

knowledge about 9, incorporating the prior p.d.f. of 9 and

the random sample. Any measure of centrality of the poste-

rior p.d.f., such as the mean, median, or mode, can be used

as a point estimate of 9 (29:339-351).

Another relatively simple way to estimate the form of

the distribution is to use the graphical method. With this

I P'r approach, the points of the empirical (i.e. sample) cumu-

lative distribution function (c.d.f.) are plotted onII 37
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probability paper of the assumed type of distribution. If

the points lie roughly in a straight line, then the correct

form of distribution was assumed.

With some types of probability paper, a scale is pro-

vided to estimate the parameters of the p.d.f. (22:295-308).

Alternatively, parameter estimates can be obtained using

other techniques such as maximum likelihood.

A lesser-known technique of density estimation is the

minimum-distance method. Given a distance function d(F,G)

which measures how "far apart" two cumulative distribution

functions F and G are, the minimum-distance estimate of 9 is

the value of G which minimizes d(F(xl),F (x)), where Fn(x)nn

is the empirical c.d.f. Although intuitively appealing, the

minimum-distance estimate is almost always difficult to find

(29:287-288).

The Gram-Charlier type A series is sometimes used to

approximate the p.d.f. of a distribution whose range is

doubly infinite (i.e. f(x)jO for -o<x<w). It is based on

the normal distribution and its derivatives and uses a

series expansion involving Hermite polynomials to approxi-

mate the unknown p.d.f. (37:257-262; 9:222-227; 17:46-60).

The Gram-Charlier type B series is based on the Poisson

distribution and involves Poisson-Charlier polynomials

(17:72-81).

In a recent dissertation, Hill (17) suggested several

ways to estimate a p.d.f. if a finite number of moments or
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the moment generating function is known. If the moment

generating function is known and the function is continuous

over the positive real line, then the p.d.f. can be found by

finding the inverse Laplace transform of the moment gen-

erating function (17:92-106). Alternatively, the moment

**.. generating function could be used to obtain moments of the

distribution and one of the series expansions, using the

Gram-Charlier type A or B series or Laguerre series, could

be used to approximate the p.d.f. (17:46-81). Hill also

suggested using the moments to fit a curve of the Pearson

family of frequency distributions (17:82-92).

Technique Selection

The H-function, defined in Chapter 2 as

m n
H p x:U(ai,Ai)}, i=l,...,p; f(bj,Bj)), j=l,...,qJ

has 2(p+q) parameters to be estimated. For statistical

distributions, two additional parameters are included to

allow for scaling and to ensure that the H-function distrib-

ution integrates to one over the appropriate range. Thus,

for H-function distributions, there are 2(p+q+l) parameters

to be estimated. We therefore needed a method of estimating

parameters that could produce estimates for a vector of

parameters.

Method of Maximum Likelihood.

As noted in a previous section, the method of maximum

likelihood can be used with a vector of parameters and is
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widely used for this purpose. The maximum likelihood esti-

mates also possess many desirable properties of estimators.

Therefore, we attempted to obtain maximum likelihood

estimates for the parameters of the H-function.

.0Let XX 21 ...,X r be a random sample from the H-function

distribution

Sk H [cx:[(ai,Ai), i=l,...,p; (bjBj), j=l,...,q ,

p q

m n

hereafter abbreviated as kH (cx). Our objective is to
p q

obtain point estimates for the 2(p+q+l) parameters k,c,a i

and A i (i=l,...,p), and bj and Bj (j=l,...,q) using the

method of maximum likelihood.

The likelihood function is simply the product of the

individual densities. For a random sample of size r,

r m n
L(kc,ai,AibjBjlx l,... ,xr) =7 kH (cxh)

h=l p q

m
r 77 r(bj+Bjs) T-7 F(l-ai-Ais )

il (cxh) ds

h--1t L-lT Fai+Ais) 77 r(l-bj-Bjs)

i:ljm1

This function must be differentiated with respect to each of

the parameters k,ctai,AibjBj. Differentiation with

respect to k or c, while not trivial, is easy when compared

to differentiation with respect to the other parameters.
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Mathai and Saxena (26:19) give results, due to

Buschman, for the Mellin transform of the partial deriva-

tives of an H-function with respect to its parameters.

These results imply that the partial derivatives may be

brought through the contour integral and evaluated using the

chain rule. For example,

." 1 0

H - __ 1 if (+Bs) 4(b+Bs)x - s ds
b2-i C

and

1 0

H -1 (1 s fl(b+Bs) *(b+Bs)x - s ds

Consider the special case where k=c=m=q=l and n=p=O.

Then the likelihood function is:

r 1 0
L(bBlx l , *. .. x r) = 1 H (xh)

h=l 0 1

r 1
- .'=TT T1 f[(b+Bs) (xh)-S ds

S. h=l C

The maximum likelihood estimates for b and B are the

solutions to the two equations:

7T 2 r f(b+Bs)(xj)-s ds] 0 (3.1)
Sj#h c
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and

h:1 sF(b+Bs) *(b+Bs)(h)-Sds

-"- fV(b+Bs )j dsJ= 0 (3.2)
<,,,,' Tf" 2 ) (xj) -- s ]

j.h C

Contour integrals are usually evaluated by summing the

residues at the poles of the integrand. For the first

contour integral in Eq (3.1), zero and all the negative

integers are poles of order two. Therefore, it could be

replaced by an infinite sum of residues, say g(xh,b,B,J).
"= , J=O

The other contour integrals in Eq (3.1) are simply H-

functions which equal

- jB 1
b B

±-(x )B -x
B

For the first contour integral in Eq (3.2), zero and all the

negative integers are poles of order two. Therefore, it

could also be replaced as an infinite sum of residues, say

Z U(xh,b,B,J). Thus, Eqs (3.1) and (3.2) could be
J-0

rewritten as:

h= Z g(xh,b,B,J) []'. B e (xj) =O
* I J=O jh
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. and- ( (xi) ]
U(Xh )  - 1(x.)B e-
uhfb,B,J) j;( b e ,

'->: " -:= i J = Oj h3

The maximum likelihood estimates are the values of b and B

which satisfy the above equations.

It should be noted that the convenient assumptions

k=c=m=q=l and n=p=O caused several simplifications. First,

there are only two equations to be solved. Second, the

"V. integrand in each contour integral was relatively simple.

With more complicated integrands, the evaluation of contour

integrals by the sum of residues becomes more difficult.

Finally, in the more general case, the H-functions in Eqs

(3.1) and (3.2) could not be expressed in the closed form:

1b B

B(x e-

Instead, each would be an infinite sum of residues, say

Z l(xj 1 b,B,J). This would make Eq (3.1) of the form:
J-0

h' L g(xh vb,B#J) [F( l(xj,bB,J) = 0"','.h--= J=O j~h J=O

Since no general results are known for the product of

contour integrals or the product of infinite series, more

research is required before maximum likelihood estimates for

V. . . . . . .

-.. -,1Y
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the parameters of the H-function can be developed. Thus,

the method of maximum likelihood cannot yet be used to

obtain estimates for the H-function parameters.

Method of Moments.

The method of moments seems to be the next most widely

used technique for density estimation, in spite of the

concerns mentioned earlier. As seen in Chapter 2, the

analytic moments of the H-function are simply products and

quotients of gamma functions, where the argument of each

gamma function is a linear combination of a pair of the
q

parameters. These moments could be set equal to the moments

-. ~.*of the data, creating as many equations as there are param-

eters to be estimated. These equations can, in theory, be

solved to obtain estimates for the parameters. The method

of moments, as applied to H-functions, will be fully derived

in Chapter 5.

The other parametric density estimation techniques

generally do not produce estimates as good as those from the

method of moments. Although the method of linear least

squares can also produce good estimates, the H-function

'. cannot be transformed into an equation that is linear in its

parameters.
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IV Nonlinear Solution Technique

The method of moments produces a system of nonlinear

equations that each involve products and quotients of gamma

functions. We need to find a solution of these simultaneous

equations. Numerical analysis techniques already exist that

can accomplish this task. A survey of the most common

techniques was conducted to determine which might best be

applied to our specific problem. Three of the main consid-

erations were convergence conditions, amount of calculation,

%. and rate of convergence.

Fixed-Point Iteration

In fixed-point iteration, we consider two nonlinear

equations in the form

(4.1)
f(x,y) = 0

g(x,y) = 0

We rewrite these equations by taking an x out of the first

equation and a y out of the second. This gives the

equivalent form

(4.2)
x = F(x,y)

y = G(x,y)

. _.- .d so that any root (R,Y) will solve both sets of equations.

It should be noted that there are many ways to rewrite

".. equations from the form of Eq (4.1) to the equivalent 
form

o°%- ,

of Eq (4.2).
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The fixed-point iteration begins with an initial guess

(xoyo) and generates successive approximations from the

recursive relationship [6:84]

xi+1 = F(xi,yi)
(4.3)

Yi+l = G(xiyi)

It is possible to accelerate the iteration process by using

the most current information on xi+1 in the second equation

of Eq (4.3). This produces

= F(xi,y i )

Yi+ 1  G(xi+l'yi)

which will converge provided the original iterative process

in Eq (4.3) converges [5:446).

For the original iterative process, convergence occurs

under the following sufficient (but not necessary)

conditions:

1. F and G along with their first partial derivatives
are continuous in a neighborhood about the root

2. For all points in the neighborhood,

+ [ftG] le M < 1

+ M <M

for some M, and

3. The initial approximation (x y) is taken from
the same neighborhood [6:84; 30:30; 35:223J.
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Moreover, if M is very small for all steps in the iteration

(xi,Yi), then the iteration converges quickly relative to

the case when the magnitude of M is near one [39:130].

We define the order of convergence as a measure of the

speed or rate of convergence. Order of convergence is the

lowest value of n such that the nth-derivative of g(x)

evaluated at the solution S does not equal zero. For this

reason, fixed-point iteration of the type x = g(x)

generally has first-order or linear convergence [39:84-85].

Newton's Method

Next, we discuss another fixed-point iteration of the

type x = q(x) which has second-order or quadratic conver-

gence [44:145-146]. In this case, g(x) is chosen so that

" its first derivative vanishes at the solution R.

The formula for a Newton iteration can be derived
-%

through a Taylor series expansion of f(x). When f(x) is

twice continuously differentiable, then

""f") f'(x )(x -x.) f''(M)(x -x )2

""f(xi+ ) =f(xi ) + i i+l i + i+l
'""+1 1 21

where k lies between xi and xi+, . Suppose that xi+ 1 is

chosen so that f(xi+1 ) is nearly equal to zero and also that

(Xi+l-Xi)2 is sufficiently small so that the last term can

be neglected. Then the above Taylor series simplifies to

O = f(x i ) + f'(xi)(Xi+l-Xi)

47
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which can be solved for xi+ 1 to give the recursive

relationship for Newton's Method as [44:1323

ii f(x.)

xi+ -- Xi  f (x (4.4)f',(x i )

For the general form x = g(x), the iterative process

in Eq (4.4) will have second-order convergence if the

derivative of g(x) is zero at the solution t. By

differentiating,

g'(x) = f(X) f"(x)
9f((x))2

and at x =

g'30= fW) f"(3)
[f,(I)]2

Since f(R)=O, the numerator is equivalent to zero. If the

root Z is simple, then f'(E) is nonzero, g'(R) is zero, and

the iteration converges with order two. However, if multi-

ple roots exist at R, then L'Hospital's Rule must be used to

show the convergence degenerates to first-order [39:85-89;

44:132-133].

If the derivative of f(x) cannot be solved explicitly,

then it can be solved using the approximation formula

f'(x) Z f(x + - f(x) (4.5)

for very small [ L6:278].
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To find the solution to the system of n nonlinear

equations

fl(I) = 0

f1)= O
(4.6)

fn(2) = 0

the recursive relationship in Eq (4.4) can be expanded to

!Xi+l = Ii - J(Ri )- I F(Ri) (4.7)

where J(Ri) is called the Jacobian matrix defined by

f1 1()... a001 0

af2(R) af2 )  .. af2 (R )

2 2 .2

ax J(x) =x

a f (1) af 00) f 00)
n n ... n

;.ax I  x2  ' n

evaluated at the ith iteration of 2 and the evaluation of

the equations in Eq (4.6) at Si is F(Si) [5:4501.

The approximation formula for derivatives in Eq (4.5)

can also be expanded to become

f(i )  f (i + a - fj() (4.8)

4ax k
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where is very small and 5k is a n-vector whose only non-

zero entry is a one in the kth row [5:456; 30:26).

For the recursive relationship in Eq (4.7), convergence

occurs under the following sufficient (but not necessary)

conditions:

1. fl,f 2 ,...,f along with all derivatives through
second order are continuous in a neighborhood
about the root vector x,

2. The Jacobian J(Ri) does not vanish in the same
neighborhood, and

3. The initial approximation So is chosen suffi-
ciently close to the root vector R [6:86; 5:4493.

When the generalized Newton's method converges, it has

second-order convergence if the roots are simple. But it is

difficult to insure that the determinant of the Jacobian is

*not zero. Furthermore, the necessity to invert the Jacobian

at each iteration requires many computations and thus

simpler methods are needed in most cases [39:1331.

Modified Newton's Method

For two nonlinear equations in two unknowns, the modi-

fication of Newton's method consists of applying the single-

variable Newton method two times, once for each variable.

Each time this is done, the other variable is assumed to be

fixed. Succeeding approximations are then generated from

the recursive relationship [39:1361

Xi+l= xi - f(xi,y i )
b fx(Xi,Yi)

.' ."(4.9)
*' Y~ = Yi -~~,

yg(xii)
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which can be accelerated by using the most current

information on xi+1 in the second equation of Eq (4.9)

[6:88).

Note that generally we could use either f or g to

calculate the new x and use the other function to calculate

y. One of these choices will usually converge while the

other diverges, depending on the exact problem. For n

nonlinear functions in n unknowns, there are ni ways of

cihoosing the n functions to find n unknowns. Often only one

of these choices will converge and this is the main disad-

vantage of this method [39:136-143]. But if the correct

combination is found, the convergence rate will be remark-

ably rapid and faster than linear convergence [6:87-89].

However, we need to find another simple method with a better

chance for convergence to the root.

Steepest Descent Method

Next, we discuss a gradient search technique. In

steepest descent, the recursive relationship for a general

system of nonlinear equations is

- J(i)T F(Ri)

which is similar to Eq (4.7) except that the transpose of

J(2 ) is used in place of the inverse [32:62-63]. Another

way to look at steepest descent is to consider the problem

of minimizing
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M ( iik) I 32 (4.10)

The value of Rk which causes M(Rk) in Eq (4.10) to equal

zero will also solve the original set of n nonlinear equa-

tions [24:244-245]. Although it only promises linear con-

vergence, "the method of Steepest Descent has been found to

be an effective way of getting reasonably close to the solu-

tion" [32:63]. For this reason, hybrid algorithms based

initially on the method of Steepest Descent followed by

Newton's method can be very reliable for systems of non-

linear equations [14:36-373.

Levenberg-Marquardt Method

Such hybrid algorithms are quite commonly used today.

When dealing with a system of n nonlinear equations, the

'4 recursive relationship for the Levenberg-Marquardt method is

"'" given by

Ri+1 = Ri - H(Ii) F(Ii)

where H(5 i ) = EJ( i)TJ(qi) + AiI3-lJ(Ri)T and F(R i ) is the

evaluation of the equations in Eq (4.6) at Ri

[32:633. Note that as A i increases, the step vector H(Z i )

. tends toward the pure Steepest Descent vector. On the
other hand, if Ai=o, then the method reduces to Newton's

method. By reducing Xi systematically, the hybrid itera-

tion combines the better features of both methods [32:63-64].
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However, the problem of inverting and solving the

Jacobian matrix at each iteration is still a major weakness

"'N .because the Levenberg-Marquardt method still involves an

inversion. The number of computations is excessive even for

a computer. The jolution to these problems involves algo-

rithms that are known as quasi-Newton [4:577-578]. The idea

of a quasi-Newton algorithm is to eliminate the calculations

involved with the inversion of the Jacobian matrix [14:

38-45; 32:577-578).

* '"-- Broyden's Procedure

Broyden's procedure can be used in an iteration method

to avoid the inversion of the Jacobian matrix at every

.A single iteration. The approximation to the inverse of the

Jacobian matrix A(R) is updated at each iteration using the

-, formula
%..

T

=A(R) + [(Si+l - A(Ri)Yi+)Si+ 1 A(Ri)]

"-'."Si+l A(Ri) Yi+l
S..

where Yi+l = F(i+1 ) -F(i) and

Si+= - i [5:455-460; 4:581].

Of course, for the first iteration the actual Jacobian

matrix J(10 ) must be found explicitly or approximated using

. Eq (4.8). Then J(Ro) must be inverted once before

Ol Broyden's procedure can begin. After that, the procedure

%: 53..'.5.,
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always produces an approximation to the inverse of the

* Jacobian matrix A(Ri) which can be used to replace

. J(i )- I, the actual inverse of the Jacobian matrix. The

recursive relationship is

i+1 51i A(i) F(i)

which is the same as Eq (4.7).

This procedure significantly reduces the number of

arithmetic calculations and still provides super linear

convergence [16:5-6). Therefore, iterative methods with

second-order convergence will approach second-order conver-

gence when Broyden's procedure is used. Quadratic conver-

gence will be obtained as the approximation to the inverse

of the Jacobian matrix A(Ri) becomes better [5:456).

Powell's Method

The best combination of methods and procedures studied

so far would be a quasi-Newton hybrid algorithm. This was

found in an IMSL routine named ZSPOW which contains M.J.D.

Powell's hybrid method (HYBRDI) for nonlinear equations

[32:87-114). ZSPOW not only includes the beneficial fea-

tures of the Levenberg-Marquardt method, but also implements

'A the calculation-saving strategy of Broyden's procedure'6

[16:6-7; 30:45].

In a comparison of available software which solves

systems of nonlinear equations, HYBRDI had outstanding per-

formance. Also, initial estimates of the parameters had
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little effect on the convergence C16:24, 41-44]. All of

this comes while still providing super linear convergence.

Therefore, the method used in ZSPOW will nearly obtain

second-order convergence.

In summary, the IMSL routine named ZSPOW has several

advantages. First, ZSPOW is a hybrid routine which permits

a bad initial guess of the root. Second, ZSPOW is quasi-

Newton with a convergence rate that is nearly second-order.

Next, the user needs to supply only a subroutine that con-

tains the system of nonlinear equations that has to be

solved. Finally, ZSPOW outputs error messages if the

iteration does not make good progress.

"-2 We applied this numerical analysis technique to our

system of nonlinear equations. The program described in the

next chapter uses ZSPOW to produce accurate estimates for up

to ten unknown variables from the same number of equations.

4 4
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V Methodology

The method of moments has been selected as the most

appropriate curve-fitting technique to estimate the param-

eters of the H-function. The method involves equating the

appropriate number of analytic H-function moments with the

same number of data moments. This will create as many

. equations as there are parameters to be estimated. As seen

in the following derivation, the number of equations can be

reduced by two through algebraic manipulation.

Generation of Equations

As discussed earlier in Chapter 2, the rth moment, M r'

m n
of the H-function, kH (cx), is defined by the following

p q

equation:

k
P r  - I(r+l)

where
ul"

m n
TT r(bj+Bj+Bjr) TT 7(l-ai-Ai-Ai r )

I(r+l) = l=i i=l
p q

7T r(ai+Ai+Air) iT F(1-bj-Bj-Bjr)
i=n+l j=m+l

Since I(r+l) has two parameters in the argument of every

gamma function, each H-function moment equation will involve

2(p+q)+2 unknown parameters. The same number of equations
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needs to be generated by setting AM r equal to the data's r th

moment.

Since consecutive data moments should be used, the

variable r could take on the values from 1 to 2(p-iq)+2. Let

terth moment of the data be represented byMr Bsovn

each equation for k,

2 k= Mr r+l

for r=l,2,...,2(p+q)+2. Since all the equations equal k,

_ 2 3 _ 2(p+q)+3
-M kM c M c M2 (pq c (5.1)

1(2) 1()I(2(p+q)+3)

The adjacent equations in 1Eq (5.1) can be solved for c to

give

c Mr I(rt2)
M rM I(r+l)

for r=l,2,...,2(p+q)+l. Since all the equations equal c,

C - M1 1(3) -M 2 1(4) - -M2(p+q)+l I (2(p+q)+3) (5.2)
M 21(2) M 3 (3)T M 2(~)2I(2(p+q)+2)

K'The adjacent equations in Eq (5.2) can be solved to give the

following homogeneous equations:

MiMi+2 [I(i+2)l2  -1 0 (5.3)
2

for i=1,2,...,2(p+q).
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Note that although this algebraic manipulation has

reduced the number of equations from 2(p+q)+2 to 2(p+q), the

analyst will still be required to calculate all 2(p+q)+2

data moments. Note also that if the zeroth moment is used,

then Eq (5.3) will be evaluated for i=0,l,...,2(p+q)-l.

An example of this equation generation technique may be

helpful at this time. For the generalized gamma

distribution, the H-function is given as

10
kh [cx:(b,B)J

0 1

Since p+q=l, the method should generate four equations and

then reduce the number of equations by two. Since I(r+l)=

r(b+B(r+l)), the four equations produced by the method of

moments will be

=k

MI - F(b+2B)

N = k
M 2 - r(b+3B)

3

k
M3 = "k[(+B

M4 =5 F(b+5B)
N c

By solving for k and setting the equations equal to each

other,

k- M 1 c
2  M2 c3  M3 c

4  c 5 (5.4)

*(b+2B) 7(b+3B) F(b+4B) F(b+5B)
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The adjacent equations are then solved for c and set equal

to each other to produce

C M 1 [-(b+3B) = M 2 "(b+4B) - M 3 F(b+5B) (5.5)
M2 F(b+2B) M +B)(b+4B)

..:l(b3 M4

The adjacent equations are again solved and the result is

the two following homogeneous equations:

MIM 3 [F(b+3B)
] 2  1 0

(M2 )
2 f(b+2B)F(b+4B)

M2 M4 [V(b+4B)3
2

(M3 )2 r(b+3B)P(b+5B)

Once the two equations have been solved for the parameters b

and B, then the estimates may be used in Eq (5.5) to solve

for the value of c. After this has been done, k can be

found using Eq (5.4).

As expected in the example, the method generated two

equations in two variables. The two equations still require

four data moments to be evaluated. To emphasize a point

previously made, if M0 through M 3 had been used instead,

[* then the method would have resulted in the different

homogeneous equations:

MoM 2 [V(b+2B)]
2

0M1 2 (5.6)
M1 M3 F~b+Bfl2 - 1 = 02(M l ) Fr(b+B )F(b+3B3)

(5.6)
MIM3 [f (b+3B)]2 - 0

(M2 ) p(b+2B)r(b+4B)
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These two equations are in the form of Eq (5.3) when i=O and

when i=l respectively.

Program Development

The general form of the equations in Eq (5.3) verifies

the fact that a system of nonlinear equations needs to be

solved. Even the simple case demonstrated in the example

produced two simultaneous nonlinear equations. Chapter 4

concluded that the IMSL routine named ZSPOW would be the

best numerical analysis technique to use for nonlinear sys-

tems of equations. Therefore, our program implements ZSPOW

in order to find estimates for the desired parameters.

Phase One.

The actual program development was modularized. That

is, the program was divided into four successive phases so

that each was easier to solve. The first phase involved

programs that could take perfect moments from known distrib-

utions and use ZSPOW to obtain estimates for the parameters.

Only the ai, Ai, b., and Bj need to be guessed initially.

The values of c and k can be found using the formulas in Eq

(5.2) and Eq (5.1) respectively.

The early programs in this phase could only handle one

special case of the H-function at a time. This was because

ZSPOW required a subroutine to contain the equations which

needed to be solved and the early programs only used the

actual equations like those in Eq (5.6). In addition, this

phase's early programs could only outp, t. the results for the
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one special H-function. However, these early runs did dem-

onstrate the merit of the ZSPOW numerical analysis technique

for finding accurate estimates of the parameters.

The later runs in phase one became more general. These

*.' programs could generate equations in the form of Eq (5.3)

and output the results for the input values of m, n, p, and

q. The only restriction was that p+q had to be smaller than

six due to matrix dimension limitations. Our research was

not expected to go past a 2 nd order H-function. Also, the

input variable FLAG controlled whether the zeroth moment was

used. Therefore, the user could generate the correct

equations by using the proper input of FLAG.

This concluded the first phase programs. Accurate

results were achieved with perfect moments for all ist and

2 nd order H-functions. At times when the initial guess of

the parameters was far away from the proper number, ZSPOW

would not converge on the expected root. This problem was

corrected during the second phase.

Phase Two.

The second phase involved attempts to control the ini-

tial guess of the parameters. The first control consisted

of checking the initial guess against a set of H-function

convergence conditions (26:3; 7:72). Some of these condi-

.'N tions were mentioned previously in Chapter 2, but now we

fully discuss the subject.
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If ai, bit Ai , Bit m, n, p, and q hold their usual

meaning in the definition of the H-function, then the new

terms D, E, and L can be defined by the following equations:

n m p q
=l jLlBj _+i j 1B j

q
E- B (5.7)

q P
L= Zbj 2q i E

2 i~' 2

Chapter 2 also pointed out that all Left Half-Plane (LHP)

m
poles of 7T fl(bj+Bjs) must lie to the left of C1 and all

j=l

n
Right Half-Plane (RHP) poles of 7T 7 -- is) must lie to

i=l

the right of C1 . From this point on, we refer to the path

of integration (CI) as the w line. Since there may be a

significant distance between the right-most LHP pole and the

left-most RHP pole, the w line may be placed anywhere

within the range defined by those two values. This distance

will be referred to as the w range where W low is the

right-most LHP pole and Whigh is the left-most RHP pole.

With these definitions, a completely specified H-

function represented by an infinite sum of residues does not

converge under any of the following conditions:
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Case 1. D = 0 E < 0 L > (E) low

" Case 2. D = 0 E > 0 L > (E) whigh

Case 3. D = 0 E = 0 L > 0

Case 4. D = 0 E = 0 L =0

4'. Case 5. D < 0

Case 6. o high

For all other cases, the H-function will converge.

This convergence check was placed in a program sub-

routine. After the program user makes an initial guess of

I .the parameters, the completely specified H-function is

checked against the convergence conditions. This forces the

• .initial guess to meet convergence conditions and helps ZSPOW

find the correct root. As a last check, the final estimate

of the parameters determined by ZSPOW is also checked for

* §.-. convergence.

Up to this point, the user had been given the responsi-

bility for the initial guess of the parameters. The second

control on the initial guess involved supplying initial

guess default values. Two requirements were built in.

First, the default values were designed to always meet the

initial convergence condition check. Second, the default

guesses only take on values between zero and one. The

reason for this may not be clear. For common distributions,

when an H-function parameter is specified by an exact number,

that number will take on the value 0, 1/2, or 1 (Table I).

When a H-function parameter is represented by a variable, no

... 63
,'. ,,63

*2%-



default guess will be appropriate for all possible values of

the variable. Therefore, the default guess of the

parameters is as good as possible.

1 5tandndMany runs on is t and 2 order H-functions were per-

formed at this time to validate the use of the variables

FLAG and GUESS. When FLAG = 0, the zeroth moment was used.

When FLAG = 1, the moments began with the first moment. The

same results were achieved on each run no matter how FLAG

was set. Since we were concerned with the inaccuracy of

higher degree moments, most future runs were performed with

FLAG = 0. This is the suggested configuration for running

the program. However, when the zeroth moment is inaccurate,

the program user may wish to set FLAG = 1.

If GUESS = 0, the user supplied the initial guess of

the H-function parameters. When GUESS = 1, the default

initial guess was used. The default guess also performed as

expected. If distributions had actual parameter values

around the range (0,1), then GUESS = 1 converged to the

correct root. If distributions were run that had actual

parameter values too far from the (0,1) range, GUESS = 1

produced an error message. For example, Beta (9=2,0=1O)

will not run using the default guess because the initial

estimate of small a=0.7 is not close enough to the actual

value of a=ll.0. Therefore, we suggest that the program

user set GUESS = 0 and make an initial guess unless he

thinks the unknown distribution has actual values for the
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parameters near the range (0,1). Table II lists the dis-

tributions which may always be run with the variable GUESS

set to one.

Table II. Distributions With Constant H-function Parameters

(a,A) (b,B)

Exponential (0,1)

Rayleigh (1/2,1/2)

Maxwell (1,1/2)

Half-Normal (0,1/2)

Uniform (1,i) (O,1)

Bessel (0,1/2) (0,1/2)

All other runs with GUESS = 0 converged when a reasonable

guess of the parameters was made.

In conclusion, the accurate convergence to the root by

ZSPOW was enhanced by the convergence checker subroutine and

the option for an initial default guess of the parameters.

At this time, we had produced a program which could consis-

tently fit more special functions than any previous general

special function procedure.
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Phase Three.

In all previous computer runs, exact moments had been

used. In this respect, the computer program had been veri-

fied. By verification, we mean the program performed as it

was expected to perform. Phase 4 would continue the verifi-

cation process by insuring that error messages performed as

desired. On the other hand, Phase 3 concentrated on valida-

tion. If the program was to be valid, it should not require

perfect moments.

One way to input imperfect moments would be to add some

error to each moment. A more reasonable approach might be

to calculate the moments from raw data. But an analyst

cannot always control the type of data he will receive.

Therefore, Phase 3 added the capability to input the

following four types of data:

Type 0. Previously calculated moments

Type 1. Univariate deviates

Type 2. Ordered pairs from a relative frequency

Type 3. Ordered pairs from a continuous function

The last three types were new and each needed a subroutine

that could calculate moments from raw data.

For type one, the data's rth moment was calculated by

using

n (x.)r
Mr 1n
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where there are n univariate data points. For type two, the

data's rth moment was calculated by using

m

Mr = . (xj)r Pr(x=xj) (5.8)
',j=lJ

r-=

m
where there are m ordered pairs and Z Pr(X=xj) = 1. For

j=l

type three, the data's rth moment is exactly represented by

M (x)rf(x) dx
'pr

This formula may be approximated by using

m
Mr = k; (xk )r f(xk ) Ax (5.9)

m

where there are m ordered pairs, k f(xk ) need not equal

one, and Ax is the interval between the xk values. Since

Eqs (5.8) and (5.9) were similar and both involved ordered

pairs, they were combined into a single subroutine.

Recall that the H-function is only applicable for con-

tinuous functions. This means that even though discrete

distributions like the Poisson can generate data in the form

of type one or two, the H-function will not be useful in

these instances. only univariate data from continuous dis-

tributions defined over positive x should be used in type

' m ,67
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one. Similarly, only relative frequency data from contin-

uous distributions defined over positive x should be used in

type two.

At this stage, we generated data to validate the pro-

gram. Type one data consisted of deviates generated from

standard distributions. For example, the exponential

deviates with 0=2 were generated by IMSL using the formula

x = -[ln(l-z)]/2

where z is a random number from a uniform (0,1)

distribution.

Type two data was created by classifying the type one

deviates into intervals. This produced ordered pairs

(x,f(x)) where x is the midpoint of the interval and f(x) =

Pr(X=x). The Pr(X=x) is the proportion of deviates within

the interval. In the exponential example, the ordered pairs

may look something like

( .5, .5)
(1.5,.25)
(2.5,.iO)
(3.5,.06)
(4.5, .04)
(5.5,.03)
(6.5, .02)

The first ordered pair represents the fact that 50% of

the exponential deviates were located within the interval

(0,1). In truth, an analyst would never combine type one

data into intervals to create type two data. By doing this,
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he would only lose information. We go from type one to type

two data only for the ease of generating ordered pairs of a

relative frequency from a continuous distribution.

Finally, category three data was created by assuming

-" -the function was known. This produced ordered pairs

(x,f(x)) which basically plot the function at a limited

number of points. To keep the mathematical calculations

simple, the function is evaluated so that Ax is the same

* between all x values. In the exponential example,

f(x) =2e

and the ordered pairs would be created by observing the

value of f(x) as x is incremented from 0.01 to 10 by 0.01.

We were careful that each type of data was generated

. from the same distributions and functions that had been used

for verification. The moments calculated from the data by a

moment generating program were compared to the perfect mo-

ments. The data moments were fairly close to the true

moments but they became increasingly inaccurate for higher

degree moments. Next, we validated the convergence of the

phase three program with the inaccurate moments. The pro-

gram converged to nearly the same root that had been ob-

served during verification. Finally, the actual raw data

... was input into the program. The program always converged to

the same root as had been seen with the inaccurate moments.

This validated our program's ability to handle raw data.
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In conclusion, the program now had the following fea-

tures. The program could input either previously calculated

moments or three types of raw data. If raw data was input,

the program would generate the appropriate number of data

moments. The program would then supply a default initial

guess of the H-function parameters if the user did not

supply his own. The completely specified H-function would

next be checked against the convergence conditions. If they

were not satisfied, the program would be terminated. If the

convergence conditions were met, the program would continue

by using ZSPOW to get final estimates of the H-function

parameters. Once ZSPOW had finished, the final estimates

were again tested against the convergence conditions. The

final results were then output along with an error message

if the last convergence test had failed. The program's

flowchart can be seen in Figure 1.

The reason for the output even if the final estimate

did not meet convergence conditions was to check if the
"o.

inaccuracy of the moments had caused the problem. An exam-

ple of this might be an estimated B=1.O in the numerator and

an estimated A=1.O1 in the denominator. This would produce

a D--.OI in Eq (5.7) and therefore the H-function would not

meet the convergence conditions. However, both estimates

should probably equal one. The estimate of A may be off due

to imperfect moments. The only way to find this type of

error is to always output any final results of ZSPOW.

70



Begin

Moments
or

Raw Data

no

UsTOPues

.~or

Figuefal .PgramFlwcar

Initi71



. . . . . . -

However, many other typ-es trr _ri .411 cause the program

to stop.

Phase Four.

The final phase added error checks and comments to the

program. The comments were intended to help the user under-

stand the program. The error messages were intended to keep

the user within the bounds of the program and to give the

user some idea of why the program was stopped. In order to

get the most information from the error messages, it is

important to know the order of error checks. For instance,

if three conditions are checked and the program stops be-

cause the third condition is not satisfied, then the user

can reason that the other two conditions were satisfied.

The following list contains the successive order of

necessary conditions for the program to continue running:

1. FLAG =O or 1

2. 0< m< q

3. 0< n< p

4. p+q < 5

5. TYPE =0, 1, 2 or 3

6. If TYPE = 0, then number of moments = 2(p+q)+2

7. If TYPE = 1, 2 or 3, then amount of data > 20

8. If TYPE = 2 or 3 then Ax the same between all pairs

9. GUESS = 0 or 1

10. Initial guess meets convergence conditions

11. ZSPOW runs without IMSL errors
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In addition to these error messages, the program will output

an error message if the final estimate of the parameters

fails to meet the convergence conditions. The difference is

that the program will continue running for this last error

check and output the results of ZSPOW. The reason for this

has already been discussed.

Two final comments on error messages may help the

program user. First of all, when the convergence conditions

are not met, the program will output an error message

listing the specific case that was not satisfied. These

cases were listed earlier under the subheading of phase two.

Second, ZSPOW outputs the following error messages in Tape 6:

I. IER=129 indicates that the maximum number of
iterations has been exceeded,

2. IER=130 indicates that the desired number of
significant digits is too large, and

3. IER=131 indicates that ZSPOW has not made good

progress.

All the error checks were verified by making the appropriate

mistake on the input tape.

The last comments added to the program consisted of the

data input format for Tape 8. Although many of the terms

have been defined previously throughout Chapter 5, the defi-

nitions are restated so they may be seen in one convenient

location. If the zeroth moment is used, then FLAG = 0. If

the moments start with the first moment, then FLAG = ]. The

variable M is the number of "B" gamma functions in the

numerator, N is the number of "A" gamma functions in the
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numerator, P is the total number of "A" gamma functions, and

Q is the total number of "B" gamma functions. If previously

calculated moments are used, then TYPE = 0. If univariate

data are input, then TYPE = 1. If ordered pairs from a

- - relative frequency or from a continuous function are input,

then TYPE = 2 or TYPE = 3 respectively. GUESS = 0 if the

user wishes to supply his own initial guess of the H-

function parameters. If the default initial guess is de-

sired, then GUESS = 1. Finally, if TYPE = 0, then NUM is

the number of moments. If TYPE = 1, then NUM is the number

of univariate data points. The variable NUM is the number

of ordered pairs if TYPE = 2 or TYPE = 3.

The data must be input on Tape 8 as follows:

1. FLAG, M, N, P, Q, TYPE, GUESS, NUM (Integers)

2. Data (Real) -

A. TYPE 0 - 2(P+Q)+2 moments from lowest

to highest

B. TYPE 1 - NUM univariate data

C. TYPE 2 or 3 - NUM data pairs in the

form x, f(x)

3. Initial Guess (Real) -

A. GUESS 0 - 2(P+Q) parameters:

"B" pairs in the numerator

-0 "A" pairs in the numerator

"B" pairs in the denominator

"A" pairs in the denominator

0 B. GUESS I -No input necessary
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The program was now in final form and can be seen in Appen-

dix C. It had been verified and validated by over one

hundred separate runs t We next discuss the program limita-

tions that came about because of the decision to use the

.-' -first definition of the H-function in Chapter 2 and the

* decision to use the method of moments in Chapter 3.

Program Limitations

One of the first decisions that was made was to use the

first equation in Eq (2.1) as our definition of the H-

function. This decision forced the calculation of I(s) to

be done with the formula

m n
TT P(bj+Bjs) - F(1-ai-Ais)

I(s) - j=l i=l
p q-7T F(ai+Ais) - F (1-bj-Bjs)

i=n+l j=m+l

This formula was placed in a program subroutine named

COMPIS. The program cannot solve for H-functions such as

m n
H(z) = H £z2 :[(ai,Ai)); ((bjBj)}]

p q

or

m n
H(z) = H [l:[(ai,Ai)}; [(b Bj))]zp q

because the variable z must have a power of one. This is

not a serious limitation. The program user can use the
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properties outlined in Chapter 2 in order to convert the

H-function to the proper form of

m n
H(z) = kH Ccz:f(ai,Ai); [(b. Bj)I]

p q

As an example, suppose the program user expected an H-

function like

01
H(z) =H L(2zV-:(-1,1);]

1 0

He would only be able to run the program after using the

reciprocal property to produce

10
H(z) H [2z:;(2,l)]

01

where the variable z is taken to the first power.

The second decision to use the method of moments posed

more serious problems. The first problem involved the

unstable nature of the higher data moments. A sufficient

discussion of this problem can be found in Chapter 3. With

data moments not close to their true value, the H-function

cannot be expected to accurately fit the true distribution.

The second problem with moments eliminated some func-

tions and one distribution from our H-function curve-fitting

procedure. The method of moments does not apply to those

statistical distributions and functions that either do not
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have defined H-function moments (1jr ) or do not have finite

data moments (Mr). This included all trigometric functions,

the log (l±z) function, and the Half-Cauchy distribution.

The method of maximum likelihood estimation may allow these

few remaining functions and the one distribution to be fit

once the theory has progressed.

The third problem involved restrictions on three of the

remaining 2 nd order distributions. These restrictions come

from the fact that 2 nd order H-functions require five addi-

tional moments besides the zeroth moment. Recall that the

recommended configuration for the program is FLAG = 0. In

order to generate the required number of H-function moment

equations, the following restrictions must be met. For a

half-student distribution, the parameter 9 cannot be less

than or equal to five. For an F distribution, the parameter

0 cannot be less than or equal to ten. Finally, for a beta

distribution of the second kind, the parameter 0 cannot be

less than or equal to five.

The fourth and final problem caused by the decision to

use the method of moments has already been referred to as

the problem of moments. Moments, in general, do not

uniquely determine the distribution function when only a

finite number of moments are available (29:81; 33:202-203).

This can be seen in Figure 2, taken from Ramberg (33:205),
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x., I],, - 1. 0.0.0 20 . 40 5.5.

Figure 2. Two Densities With Approximately
the Same First Four Moments

which compares the graphs of two different distributions

that have approximately the same first four moments.

Data Generation

The next step was to create data sets from, mathematical

U.,-

U.functions and statistical distributions. WJe decided not to

%. .4

use'.' eihe.0 p 1 or typ 2 daa Recal tha typ 1at

ar u igre deiae and thastie Wtyp Appoxiat e odee

pairs frmarltve frqun.Sme mathematicaloments

wins compare nte covrphs ofntwo eihertyetf dita.butons

..-',that mateapr, xml the sn ofivrt ou tmmetisia. dt

into a relative frequency was both time-consuming and sub-

. rjective. Since graphs were desired, paired data were

necessary.
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Type 3 data had none of these disadvantages. Recall

that type 3 data are observations of the function f(x) at

various values of x. Both mathematical functions and sta-

tistical distributions could be easily converted into type 3

data. The data pairs made graphing possible. These graphs

were important to provide a visual representation of the fit

of the estimated H-function to the data.

The following three factors were considered when we

created the type 3 data:

1. Amount of data,

2. Type of function, and

3. Order of the H-function.

The amount of data could either have a small level or a

large level. For the small level, 20 data points were used.

For the large level, 100 or 150 data points were used. The

type of function could be either a nonstatistical, mathema-

tical function or a statistical distribution. Examples of

mathematical functions were the power and generalized gamma

functions. Statistical distributions included the exponen-

tial and beta probability density functions. The third

factor also had two levels, because we created both first

* Qand second order data.

As a minimum, we created 8 separate data sets to cover

> -each factor at two levels. This demonstrated the versatil-
J

ity of the H-function curve-fitting procedure. In addition,
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many other data sets were created so that more than one
graph could be inspected.

Procedure

Once the parameter sets were generated, we used the

computer program named THESIS (Appendix C) to estimate the

parameters of the H-function from the raw data. These

estimates could then be used in two ways.

First, if the data was from a distribution, then the

estimates could be compared to Table III in order to deter-

mine the closest distribution. As an example, if THESIS

returned the values

b = 6.00

B = 1.O1

k = .0027

c = .5

then the program user could hypothesize that the data was

from a gamma distribution. Since G-l=b and b=6.O0, the user

would estimate 9=7.00. Further, since c=0 and c=.5, the

estimate of 0 is 1/2. Therefore, the user could stop and

say the data was from a gamma (9=7,0=.5). However, the user

implies B=1.00 and k=.0027778 when he assumes that the data

is from that specific gamma p.d.f. There is no general

method to reevaluate the other parameters once the

additional constraints have been added.

It is better to use the estimates of the parameters of

the H-function in another way, as is done in this thesis.
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Once the estimated parameters were found, we used another

computer program [7:Appendix B] to determine the value of

m n
kH (cx) for the same values of x as the data pairs.

p q

Finally, both groups of paired data were graphed together to

display the fit of the estimated H-function to the actual

data. These results, along with the discussion of the

measure of fit between the H-function and the data, will be

described in the next chapter.
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VI Results

Measure of Merit

Earlier we mentioned the fact that we would use the

estimated mean squared error (MSE) as our criterion for

measuring the goodness-of-fit of the H-function to the data.

For the ith value of x, let the value for the actual func-

tion be f(x.) and the value for the estimated H-function be

H(xi). Then the square of the distance between the H-

function and the data point would be 1H(xi)-f(xi)]2. The

sum of squares error (SSE) is then found by adding the

square of the distance for all n values of xi:

n
SSE = i [H(xi)-f(xi)

] 2

Since we wanted to compare graphs with different amounts of

data, the SSE needed to be adjusted for the number of data

points as in

Estimated MSE = SSE/n

We expected to see a lower estimated MSE for the graphs

generated from a large amount of data.

Graph Description

An invented example of the graphs is shown in Figure 3

below. This graph was not derived using the H-function

curve-fitting procedure. As seen in Figure 3, a line will

be used to represent the H-function data. The actual data
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CalESTIMATED MSE 0.0731723595

LO

t o
XCOS

00 2.00 4.00 .00 8. 00 MO.X VALUES

Figure 3. Sample graph

will be plotted as individual points. The estimated MSE can

be found in the upper right-hand corner of the graph.

The thesis procedure used input decks like the follow-

ing for a Gamma (9=3, 0=2) with the amount of data equal to

twenty:
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l00=0,1,0.1 ,3,0.20
110= .2500 .15163266 9
120= .5000 .7-678794412

130= .7500 .5020429603
140= 1.0000 .5413411329
150= 1.2500 #5130312414
160= 1.5000 .4480836153
170= 1.7500 .3699179469
180= 2.0000 .293050222
190= 2.2500 .2249571799
200= 2.5000 .1684486750
210= 2.7500 .1236248360

220= 3.0000 #0892350784
230= 3.2500 .0635203059
240= 3.5000 .0446822163
250= 3.7500 .0311109958
260= 4.0000 .02146960-2
270= 4.2500 .0147005397
200= 4.5000 .0099961041
290= 4.7500 .0067553776
300= 5.0000 .0045599930
310=2.1234
320=1.23-45

Line 100 contains FLAG, M, N, P, Q, TYPE, GUESS, and NUM.

Lines 110 through 300 contain the type 3 data. The remain-

ing two lines are the initial guess of the H-function param-

eters. Thesi data decks were input into the program named

THESIS which produced results such as

RESULTS OF ZSF'OW -

NUMERATOR:
SMALLB(1)= 1.181637000173736851

790076 1633 79332 236
DENOMI NAT OR:

VALUES OF K S C ARE:
K= 1.112206977428968457
C=  1.10201983525497 1269
FNORM= .000000000000,-00000
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FNORM is a measure of how close the estimated root vector,

x, is to the true solution of the system of equations:

2 (P+Q)
* FNORM = Fi(R)32

where Fi is the ith nonlinear equation. These results were

then converted into familiar H-function notation such as

10
(1.11221) H [(l.10202)x:;(l.18164,.79OO8)]

0 1

Once this was done, the estimated H-function was evaluated

for the same values of x as the actual data. Then both sets

of paired data were graphed in Figure 4A.

Other figures for small and large amounts of data were

created using th,. -ame procedure. They can be found in the

following lists:

First Order Statistical Figures

1. Gamma (8=3,0=2) 4 A/B

2. Exponential (0=1/2) 5 A/B

3. Chi-Square (9'=4) 6 A/B

4. Weibull (9=3/2,0=1) 7 A/B

5. Rayleigh (0=4) 8 A/B

6. Maxwell (8=2) 9 A/B

7. Half-Normal ()=l) 10 A/B
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Second Order Statistical Figures

1. Beta (8=2,0=3) 11 A/B

2. Power Function (e=3) 12 A/B

3. Uniform 13 A/B

4. Half-Student (9=16) 14 A/B

5. Bessel (9=1,0=1) 15

First Order Functional Figures

1. Generalized Gamma Function

(b=l,B=1/2) 16 A/B

" -2. Generalized Gamma Function

(b=l,B=l) 17 A/B
-V%

Second Order Functional Figures
-bb

-1i. (b=2) 18 A/B

2. zb (b=l) 19 A/B

3. b (b=-l) 20 A/B

4. zb(l-z)+a (b=i/2,a=l) 21 A/B

5. zb(l-z)+a (b=1/2,a=2) 22 A/B

The figure number can be used to reference the correct

graph. The graphs were kept together and placed in Appendix

D for quick comparison.

In addition to Appendix D, Table IV summarizes the

estimated MSE for each figure. The low estimated MSE for

each graph demonstrates the ability of the H-function to fit

various sets of raw data. Another reassuring finding is

that the H-function fits better when more data is available.
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TABLE IV

Estimated Mean Squared Errors

AMOUNT OF DATA
Figure ..

Small Large

4 A/B 0.0000658751 0.0000003710

5 A/B 0.0003411134 0.0000588732

6 ,_/B 0.0000153797 0.0000001745

7 A/B 0.0005039677 0.0000054808

8 A/B 0.0001306474 0.0000000673

9 A/B 0.0000007455 0.0000000006

10 A/B 0.0021639213 0.0001184473

11 A/B 0.0018068877 0.0000004352

12 A/B 0.0027320795 0.0000056500

13 A/B 0.0052858926 0.0016352035

14 A/B 0.0014194577 0.0002971406

15 --- 0.0000537173

16 A/B 0.0001038111 0.0000000003

17 A/B 0.0000673331 0.0000006979

18 A/B 0.0002744282 0.0000006392

19 A/B 0.0006307255 0.0000010364

20 A/B 0.6901255958 2.0283752311

21 A/B 0.0029725091 0.0000013842

22 A/B 1 0.0029537131 0.0000013089
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This can be seen when the estimated MSE values for large

amounts of data are lower.

Demonstration Runs

The list above covers many statistical distributions

and mathematical functions. In fact, all first order sta-

tistical distributions listed in Chapter 2 were run (Figures

4-10). For second order statistical distributions, those

without restrictions on the distribution parameters were run

(Figures 11-13, 15). In addition, the second order half-

student distribution was run as a first order distribution

to analyze the effect of underestimating the true order

(Figure 14). Finally, a group of first and second order

mathematical functions with various shapes was run (Figures

16-22).

All the runs above were done with type 3 raw data. The

program could also be used with previously calculated per-

' fect moments to demonstrate the special properties of the H-

function discussed in Chapter 2. The input decks differed

slightly because the type 3 data was replaced by a single

line of perfect moments.

The reduction properties were demonstrated as follows.

Perfect moments were derived for an exponential (0-1/2).

For the first red-iction method, an "A" gamma function in the

denominator had to have the same parameters as a "B" gamma

function in the numerator. When these two cancelled, an

additional correct "B" gamma function had to be left in the
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20
numerator. The input deck for the kH [cx] looked like

12

100=0,2,0,1,2,0,0,8
110=1I,2,8,48,384,3840,46080,645li20
120=*342
130=1.316
140=2.222
150=. 106
160=2.987
170=*543

The results from THESIS were

RESULTS OF ZSFOW -
NUMERATOR*,

SMALLB(1)= -.000000107534486133
BIGB(1)= .999999863516116250
SMALLB(2)= 2.772153771162535918
BIGB(2)= .856711887061141653

DENOMINATOR:
SMALLA(1)= 2.772153730034659702
BIGA(I)= .856711753324468361

VALUES OF K I C ARE:
K= -. 499999821510282771
C= .499999977412008079
FNORM= .000000000000000899

Note the nearly equivalent parameters in the numerator and

the denominator. When reduced, the second order H-function

approximated the true first order H-function of

0 1

Therefore, the first reduction method worked.

9
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The second reduction method works when an Ai.or B.

vanishes. For the same exponential distribution, the input

1 0
deck for kH Ecx) was

100=0P,1,0,1, 1,0 0,6
110=1 ,2P8Y48P384 ,3940
120=. 342
130=1s316
140=2.22
150=#*106

The results from THESIS were

RESULTS OF ZSF'OW -

* NUMERATOR**
SMALLB( 1)= .000000000070760199
BIGE'( 1)= 1 .000000000109487530

DENOMINATOR:*
SMALLA (1)= 4o* 355736433?44662287
BIGA(1)= #000011372100772754-

VALUES OF K & C ARE:'
K= 3,*137655798202459323
C* #499992800657203418

FNORM= #000000000000000000

Note the A1 in the denominator is approaching zero. There-

fore, the "A" gamma function was essentially a constant

rn4.036) term in the denominator. This term was evaluated

to be 6.2 79. When brought out of the integral and under the

k, the true k became 3.138 divided by 6.279 or 0.4998. This

-.. iapproximated the true first order H-function so the second

reduction method also worked.

91



Next, the generalization of the uniform distribution

S10
was demonstrated. The input decks for kH Ccx] were

1i

100=0,1,0,1,1,0,0,6
110=1,,5,.33333333,.25,.2,.16666667
120=#14567
130=.96543
140=1.23456
150=.916432

and

100=0,1 ,0,1,,0,0,6
110=1,.5,.33333333,.25..2,.16666667
120=.675
130=2.111
140=.337
150=1.998

Note that only the initial guess of the H-function parame-

ters was changed. The first initial guess gave results from

THESIS as follows:

RESULTS OF ZSFPOW -

NUMERATOR:
SMALLB(1)= .000001122240934309
BIGEB(1)= 1.008864174078524911

DENOMINATOR:
SMALLA(1)= 1.000006384974028606
BIGA(1)= 1.008865002792290966

VALUES OF K I C ARE:

K= 1.008864845751389794
C= .999996837738926558

FNORM= .000000000000015405
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These results were close to the nongeneralized uniform
S.

1 0
distribution H Ex:(1,1); (0,1)].

11

. ~ When the initial guess was changed, the results became

RESULTS OF Z POW -

NUMERATOR:
SMALLB(1)= .0000827850398w7461
BIGB(1 ,= 15.426639569366727756

DENOMINATOR:
SMALLA(1)= 1.000092670887106294
BIGA(1)= 15,426641384669039780

VALUES OF K Z C AREO
K= 15.427045040037867873
C= .999988515678520429

1 FNORM= .000000000000000891'

These results demonstrated the generalized uniform distribu-

1 0
tion uH Ex:(l,u); (0,u)] where u=15.427. Looking back

11

at the first uniform, this also was generalized but u=1.009.

When these two specific H-functions were evaluated for

x values, the following results were obtained:
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U=1.009 u=15.427

•0500 .999?99 00500 0999999
.1000 1.000000 .1000 1.000000
.1500 1.000000 .1500 1.000000
.2000 1.000000 .2000 1.000000
.2500 1.000000 .2500 1.000000
,3000 999999 .3000 1.000000
.3500 ,999999 .3500 .999999

.4000 1999999 o4000 .999999

.4500 ,999998 .4500 ,999999
• 5000 .999998 .5000 .999997

.5500 .999998 .5500 .999996

.6000 ,999997 .6000 6999995

.6500 .999996 .6500 .999994

.7000 0999995 .7000 .999992

.7500 ,999995 .7500 .999991
18000 ,999993 .8000 .999989

.8500 .999991 .8500 .999987
,9000 .999989 .9000 .999985
.9500 ,999984 .9500 .999982

1'0000 .999959 .0000 .999979

Both H-functions were a good approximation to the uniform

distribution.

The generalization of the Pareto distribution (e=6) was

01
also demonstrated. The input deck for kH [cx) was

11

100=0,0,1,1,1,0,0,6

110=1,1.2,1.5,2,3,6
120=-5.654
130=1.112
140=-7.174
150=*987
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This gave results from THESIS of

RESULTS OF ZSF"r*W -
NUMERATOR:
SMALLA(1)= -3.83278965570049479:1
BIGA(1)= .690398445680816764

DENOMINATOR:
SMALLB(1)= -4.832794475434639025
BIGB(1)= .690398684011771735

VALUES OF K I C ARE:
K= 4.142424973174115621
C= 1.000001072468101881

FNORM= .000000000000014109

These results demonstrated the generalized Pareto distribu-

01
tion ueH Ex:(l-u(l+e),u); (-u(l+e),u)] where u=0.6904.

11

The H-function was then evaluated for x values. These

data pairs were then compared to an actual Pareto

distribution with e=6:

1.2500 1.250287 i,2500 1.258291
1.5000 .351166 1.5000 .351166
1.7500 .119367 1.7500 .119367
2.0000 .046875 2.0000 .046875
2.2500 .020553 2.2500 .020553
2.5000 .009830 2.5000 .009830
2.7500 .005045 2.7500 .005045
3.0000 .002743 3.0000 .002743
3.2500 .001567 3.2500 001567
3.5000 .000933 3.5000 .000933
3.7500 .000575 3.7500 .000575
4.0000 .000366 4.0000 .000366
4.2500 .000240 4.2500 .000240
4.5000 .000161 4.5000 .000161
4.7500 .000110 4.7500 .000110
5.0000 .000077 5.0000 .000077
5.2500 .000055 5.2500 .000055
5.5000 .000039 5.5000 .000039
5.7500 .000029 5.7500 .000029
6,0000 .000021 6.0000 .000021
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The estimated H-function produced a good fit to the actual

distribution.

Now that some properties have been demonstrated, the

usefulness of the program is apparent. One further run may

emphasize this point. While attempting to produce an exam-

ple for the reduction property, the following input data

deck was used

100=0,1,0,1,1,0,0,6
110=1,2,8,48,384' 3840
120=.342
130=1.316
140=2.222
150=0886

The results of THESIS were

RESULTS OF ZSPOW -

NUMERATOR:
SMALLB(1)= -.000000002439904119
BIGB(1)= 2.000000030682542729

DENOMINATOR:
SMALLA(1)= .499999998705995097

BIGA(1)= 1.000000030809658824

VALUES OF K I C ARE:
K= 1.772453868441800751
C= 2.000000041492725700
FNORM= .000000000000000000

We were expecting to see an A, near zero. Instead the

10
program produced 1.772 H [2x:(1,1); (0,2)]. But the per-

11

fect moments were from I H [x:;(Ol)]. At first glance,

the two H-functions did not appear to be equivalent.
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46.

However, using rule 6.1.18 from Abramowitz and Stegun

(2:256) and the fact that k=1f, the two H-functions were

shown to be equal:

1H [2x:(1 ,1); (0,2)]

1 2s) (2x)-S ds
-.- c FJc +s)

- Jc2 (2x)-S ds

2

-12 f (2s- 1)F(s) x-s ds

F 1 1 (s) (x) - s ds

H 1 H [1x:(ol)]
2 o1

In a less theoretical approach, the H-function was

simply evaluated for values of x. The results that follow

correspond exactly to an exponential distribution with

0 1/2:

a-
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.7500 .343645
1.5000 .236183
2.2500 .162326
3.0000 .111565
3.7500 .076677
4.5000 .052700
5.2500 .036220
6.0000 .024894
6.7500 .017109
7.5000 .011759
8.2500 .008082
9.0000 .005554
9.7500 .003818
10.5000 .002624
11.2500 .001803
12.0000 .001239
12.7500 .000852
13.5000 .000585
14.2500 .000402
15.0000 .000277

This concludes the discussion about the results of the

thesis. More detailed conclusions about the efficiency and

effectiveness of the H-function curve-fitting procedure

follow in the next chapter. Also, new findings are

highlighted and further studies are recommended.
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VII Conclusions and Remarks

Summary

We have developed a procedure to estimate the param-

eters of the H-function which gives the best fit to a set of

raw data. The procedure uses the method of moments and can

be used with both mathematical functions and continuous

statistical distributions defined over positive x. Our

computer program will accept univariate data, data pairs, or

moments previously calculated from data. The user has the

option of using the zeroth moment or beginning with the

first moment. The user can supply his own initial guess of

N the parameters or allow the program to use a default initial

guess. The program automatically checks the initial guess

and final estimate of the H-function parameter- against the

- convergence conditions of the H-function. If the program

*should stop before completion, it also has other diagnostic

checks built in which will give the user some indication of

the error which caused the program to abort. If no errors

are found, the program will output the parameters of the

fitted H-function.

The method of moments does not always produce the

'"best" estimates of a distribution's parameters. High

moments calculated from data tend to be inaccurate. Fur-

ther, moments do not uniquely define a distribution. Still,

our experience bis shown the method of moments to be an

effective way to estimate the parameters of the H-function.
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Because the analytic moments of an H-function are easily

derived using the Mellin transformation, the equations of

the method of moments can be simply written.

We used an IMSL routine named ZSPOW to solve these

- nonlinear equations for the unknown parameters. ZSPOW con-

tains Powell's quasi-Newton hybrid algorithm for systems of

nonlinear equations. This method requires a reasonably

close initial guess and does not guarantee convergence but

these restrictions are common to most techniques. Powell's

method also provides super linear convergence.

The estimated H-function parameters can be adjusted

using Table III if a named statistical distribution was

desired. Alternatively, they could be used as inputs to

another computer program (7:Appendix B) which would calcu-

• *- late the H-function at certain values of x and plot the

probability density function (p.d.f.) and cumulative

distribution function (c.d.f.).

We tested our procedure using many mathematical func-

tions and statistical distributions. The results were

impressive and are presented in Table IV and Appendix D.

Since many mathematical functions and statistical dis-

tributions are simultaneously considered when the H-function

is fit to a set of data, fewer separate tests are required.

This generalization alone will increase the efficiency of

curve-fitting and density estimation.
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Another benefit of simultaneously considering many

functions and distributions i. that there is a higher proba-

bility of finding the function or distribution which "best"

fits the data. Thus, effectiveness increases when the

*generalized method is used.

New Findings

We made several contributions to the theory of H-.%1

functions. We discovered a new reduction property for H-

functions. We corrected typographical errors in Mathai and

Saxena (26) for arcsin(z), arctanh(z), and log(ltz). We

gave generalized H-function formulas 4nr the logarithmic

function log(z) and power function zb. We showed that the

Pareto p.d.f. can be expressed as an H-function. Finally,

we generalized the H-function formulas for the Power Func-

tion p.d.f., the Uniform p.d.f., and the Pareto p.d.f.

These new results were presented in Chapter 2 and the

details that are not obvious are presented in Appendix A.

Recommendations for Further Research

Because the c.d.f. of a random variable with an H-

function distribution is simply one minus another H-

function, this constraint could be added when fitting a

density. Fitting both the p.d.f. and c.d.f. could enhance

the power and versatility of the H-function method.

Further research is also needed to develop maximum

likelihood estimates for the H-function parameters. The
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f. S derivation was started and can be seen in Chapter 3. Our

results need to be extended.

Modifications to our program could also be made to

allow certain parameters to be fixed throughout the IMSL

routine ZSPOW. For example, the user might find that after

.- the first run is made, B=.97. He might want to fix B=l and

solve for the other parameters, given this constraint. We

could not provide this option easily because ZSPOW does not

allow a variable to be altered within the subroutine that

defines the system of nonlinear equations.

1.

'V

.4

J.
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APPENDIX A

Outlines of Proofs of New Findings

The purpose of this appendix is to outline proofs whichif.,

verify our new theoretical results. Although these proofs

are not central to the purpose of the thesis, we felt com-

pelled to verify our new findings so that others might

further extend the H-function theory.

Throughout this appendix it is assumed that the reader

thoroughly understands the process of evaluating contour

integrals in the complex plane by summing the residues at

the singularities (or poles) of the integrand.

Corrected Mathematical Functions

1 2

arcsin(z)- i H 2iz:(ll),(ll) (1,1), (O,1))
4VW 2 2 2 2T 22 2

D -1 E =O L=- R= 1

2

type VI +Y LHP residues for IzI _5 1

-Z RHP residues for Izi > 1

12

22 2 2 2 2

c 2n

numerator poles can be separated

by any w in the open interval (-1,0)
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=l+s) has poles of order 1 at2 2

fi(s) = 2 2r .~~)r-~ 2  (iz) 5S
r( -1s

2

=(s+2J+1)rq.+l.s+j+1 )Er( 1p) 2(i,)-s

2 22 2 2 2 2 2 2

= 2 22

.2 2 2i 2

=2r(J+1)iz2l
fi (sJ) 2

= 2

2_
1 .cojrJ+)ZJ)

arcsin(z) I-~ 2irZ ( y)

2

4i - 2J(1-3.5 ... (2J+1))ff z2j+l

2 2
CO

= 1 Z1.3.5 ... (2J+l)z2 J~l

-z 1Z + .3 5_+ .93.5 Z7 +

which is the infinite series for arcsin(z). The proof is

similar for Izi > 1.
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1 2
arctanh(z) -_ H [iz:(1 1 (1 1 1), (0,1)]

422 2 22 22 2

D= 1 E=O L=-1 R= 1

type VI +E LHP residues for IzI < 1

-Z RHP residues for IzI > 1

1 2
H Eiz:(1, .), (1 1) ( (0,1))
2 2 2 2 2 2 2 2

1_ 2 2 22 _(iz) 5sds

2

numerator poles can be separated

by any w in the open interval (-1,0)

F(1+-1s) has poles of order 1 at
2 2

sj=-(2J+ 1 ), J=0,1,2...

2r(!+Ls+J+1)r(1-1s) (iz)-s

fe(s) = 2 2 2 2(!+.Is) ... (.!+Is+j- i ) (-Is)
22 22 2

fj(sj) = 2(J+l)(iz)2J + l
(.)il (j+ L)
'~' 2

4i z
2 J + l

2J+l

A ( 2J+l
arctanh(z) -_ 1 21'i T 4i z

42-i j=O 2J+l

CO 2J+l
F 2J+l

3 5
- Z +-- + +.

3 5
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which is the infinite series for arctanh(z). The proof is

similar for IzI > 1.

log(li±z) = H ±z:(J.,1), (1,1); (1,1), (04l))
2 2

D -2 E -0 L=-l- R =1

type VI +ELHP residues for IzI< 1
-E RHP residues for Izi > 1

1 2

2 2

1 f 1~)r-) (±z)-I ds

numerator poles can be separated

by any w in the open interval (-1,0)

n(1+s) has poles of order 1 at

fe(s) n fl+s+j+1) cn-s)] (±z)-
(1+s) (1+s+1).. .(1+s+J-1)['(1-sT

(1+s) (1+s+1) .. .(l+s+J-1) (-s)

fj(sJ) = r(J41) (+Z)J

V - (±Z)J~i
(- 1 )J(J~ 1 )
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log (lz) = 2 i (z) J + l

J 0 (-i)J(J+l )

= (+z)l

1 -i )J (J+l)

2 3 4
log(l+z) - z - z + Z_ - +2 3 4

2 3 4
log(l-z) = -z Z _ -

2 3 4

which are the infinite series for log(l+z) and log(l-z).

The proof is similar for IzI > 1.

Generalized Mathematical Functions

log(z)" -U 2 H 2 z:(l,u), (1,u); (0,u), (0,u)
2 2

O < z <1

D 0 E - O L = -2 R = 1

type VI +E LHP residues for IzI 1

no RHP singularities

log(z) -u2.f [[(us)J 2
Z-sc Er(J+us) 2  ds" 2

-U 2 f 1 .- s d.

IJc (us)2

z -1 z 5 ds

= 2r f Er ] z5 dsS [F(1+s)] 2
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2 0

2 2
0 < z~ 1

.1 0. E. D.

log(z) =u
2 H 0 Ez:(1,u), (1,u); (O,u), (0,0))

2 2

D 0 E=0 L =-2 R 1

type VI no LHP singularities

-z H~P singularities for IzI > 1

log(z) = 2 f E'-sl 5 d=Irl.EF(1-us)) 2

= 1 z 5 ds
(~ _-us) 2

Z-s d
=4r 21 c £r( 1-s) )2

=H z:(11), (1.ih1 (011), (0.1))
2 2

z) 1

0. E. D.

Statistical Distributions

Power Function p.d.f.

f(xle) - ex-

e > 0

1 0
- ueH Ex:(u(9-1)+1,u); (u(e-1),u))

a~~1 1

D 0 E -0 Lin-1 R -1
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type VI LHP residues for IxI < 1

no RHP singularities

-iS

.xle) = - [" (u (e-)+us) x ds-r fc (u(e-i +l+us)

= ue 1 x- s ds
21ri .c (u(e-1)+us)

- e -1 x- s ds

= [2vi x- ( l - e ) }

= exe-  Q. E. D.

Note: This generalization also applies to the mathematical

power function zb

Uniform p.d.f.

f(X) = 1 O < x < 1

, 1 0
= UH [x:(1,u); (0,u)

D - 0 E - O L = -1 R = 1

type VI LHP residues for Ixi < 1

no RHP singularities

f(x) - u ffIs) XdS"1i fc 'lu)-d
M _u f 1-s ds

2 1ni c us
- 1 f1 x-S ds

21?1 Jc

---- (21i x) = 1 Q. E. D.2-mi

109



Pareto p.d.f.

f(xle) = ex-el x >

e > 0

= OH Exd(-e,lb (-9-1,1)]
1 1

D =0 E =0 L =-1 R =1

type VI no LHP singularities

-E RHP residues for lxi > 1

f(xle) = .- "- f2A± s) x 5 ds
46 2 ri fJ F(2+e-s)

- f 1 x-s d.

S~1t c t 1e1e)

=ex-G
1  Q. E. D.

V Pareto p.d.f. (generalized)

f(xle) =exel x >1

e > 0

0 1
=ueu [x:(1-u(1+e),u); (-u(1+e),u)]

1 1

D D0 E=0 L=-1 R 1

type VI no LHP singularities

-ZRHP residues for lxi >1
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f~xe9 = e f (u(1+6)-us) -S ds
2I Jr i+U i+e -us),

*4c

= u 1. S ds

T~r 1+e f 1+8s

'S U-mi1i x-(1+9)1

= x-e-1 Q. E. D.



APPENDIX B

Advanced Mathematical Functions and

Statistical Distributions Expressed as H-functions

The H-function also includes as special cases several

advanced mathematical functions and statistical

distributions (26:10-12,145-159; 37:205-206; 7:41-43,87,93).

Mathematical Functions

Bessel Functions:

: ~jv(Z = 1H [s: (2,v- 0 2 2 ) 1 T 2 2

Jv(z) = IH Es~: (YX ) (- )2 2 2 22 22

Kv(z) = H 2 (,)

"- 20
SYv(Z) = H E..: v1 )."XI,~ ) -±,)

2 13 2 2' 2 2 2 -fT 2 2

u 10
J (z) = H Ez:(0,l), (-v,u)]
v 02

(Maitland's generalized Bessel function)

Hypergeometric Functions:

M(a,b,-z) = IF1 (a;b;-z)

F,]) ,, 1 1

12

(Confluent Hypergeometric function)
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1 2

2F, (a,b;c;-z) = (c) H Cz:1l-a,1),
7a)F~b 2 2

(Hypergeometric function)

q
TTF(bj 1 p

p Fq ([ai);[b );-z) = 2... H Ez:fU1-ai,1l;

L~~~ p q+1

for p~q or for p=q+1 and IzJ<i.

(Generalized Hypergeometric functions)

4, ai:Ai)),
[f(b..Bj))

1p

H pq~lEz:(U1-ai,Ai)]; (0,1), ((1-bjBj)l)

- ~.:(Maitland's or Wright's Generalized Hypergeometric functions)

* MacRobert's E-function:

E(p; (ai) ;q7(ba i;z)

-H Ez:(1,1), ((b., B.)]A~l
* ~~~q+l p ' '(aAfl

V Meijer's G-function:

G [z: abj)
p q

rn, n
-H Ez:[(ai,1l; l~b. 1)1)
p q
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Statistical Distributions

Bessel p.d.f.

f(xle,0) =2 K (-3)
IT9080 90

H 1 E--:(O,, (0,1) x>0
-fwe- 0 2 290 2 2

General Hypergeometric p.d.f.

f(xla,b,c,d) = dad r r) (r-c) xC-lM(braxd

1 c. 1-

= adrr~ H

flc)l -c 1 2

d d d d
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APPENDIX C

Computer Program

.5115



x PROGRAM *THiSIS

.,,** WRITTEN BY: 1LT RALPH A. BOEDIGHEIMER *,
'--" * 1LT CARL. D. BODENSCHATZ **
-.** MS THESIS GOR-83D **

** AIR FORCE INSTITUTE OF TECHNOLOGY *
** SCHOOL OF ENGINEERING *~

** WRIGHT-PATTERSON AIR FORCE BASE, OHIO

PURPOSE: THIS PROGRAM ESTIMATES THE PAF:AMETERS **
** .OF THE H-FUNCTION THAT GIVES THE BEST **

FIT TO A SET OF DATA. *

* INPUT/OUTPUT0: TAFE8/TAPE2

NOTE: THIS PR'OGRAM IS WRITTEN IN FORTRAN 77. *,
:*:* IMSL MUST BE ATTACHED PRIOR TO RUNNING *,
:** THE PROGRAM FOR CALLS TO ZSFOW X GAMMA. 'K'K

* * FLAG = 0 IF THE ZEROTH MOMENT IS USED 'K
= 1 IF THE ZEROTH MOMENT IS NOT USED

M = THE NUMBER OF 'B' TERMS IN THE NUMERATOR **
N = THE NUMBER OF "A' TERMS IN THE NUMERATOR **

'K'KP = THE TOTAL NUMBER OF 'A' TERMS
** P = THE TOTAL NUMBER OF "B" TERMS **
N** TYPE = 0 IF MOMENTS ARE INPUT

** = 1 IF UNIVARIATE- DATA ARE INPUT 'K'
= 2 IF ORDERED PAIRS FROM A RELATIVE

** FREQUENCY ARE INPUT 'K
* = 3 IF ORDERED PAIRS FROM A FUNCTION
** ARE INF"UT 'K'K
* GUESS = 0 IF THE USER WISHES TO SUPPLY HIS ,*
•:* OWN INITIAL PARAMETER ESTIMATES
* = 1 IF DEFAULT INITIAL GUESSES ARE DESIRED **
* NUM = THE NUMBER OF MOIMF'NTS IF TYPE = 0 ,*

** = THE NUMBER OF DATA POINTS IF TYPE = 1
** = THE NUMBER OF DATA PAIRS IF TYPE = 2 OR 3 'K'

116

" .,.;-,.,,-'.',v-" ~ , • .": - % ,%, , ,:.., ,w ', ,''% ' ,' 3,''f',., ,. ... ..> '..'.'- :/- :"-116-,'o.':,



II THE DATA MUST BE INPUT IN TAI'EB IN THE FOIRM:
*~ 1) FLAG,M,N,P,Q,GUESSNUM (ALL INTEGER) **
* ** 2) DATA (REAL) - **
** A) TYPE 0 - 2(P+Q)+2 MOMENTS FROM **
** LOWEST TO HIGHEST **
** B) TYPE 1 - NUM UNIVARIArE DATA IC
II C) TYPE 2 OR 3 - NUM DATA PAIRS IN IC
** THE FORM X,F(X) *iC
** 3) INITIAL GUESSES (REAL) - IC
** A) GUESS OF 0 - 2(P+Q) PARAMETERS: *
** "B" F'AIRS IN NUMIERATOk *W
** "A' PAIRS IN NUMERATOR *
** 'B* PAIRS IN DENOMINATOR **
** 'A' PAIRS IN DENOMINATOR *
** B) GUESS OF 1 - NO INPUT NECESSARY *

** EQS = THE NUMBER OF EQUATIONS & UNKNOWNS IC
** IER = THE NUMBER OF ANY ERROR MESSAGE IC
ICIC ITMAX = THE MAXIMUM NUMBER OF ITERATIONS IC
ICIC NSIG = THE NUMBER OF SIGNIFICANT DIGITS IC
ICIC FNORM = THE NORM OF THE F EQUATION VECTOR IC
ICE PAR = A VECTOR CONTAINING F'LAG,M,N,P,Q, IC
ICIC AND THE 2(F+Q)+2 MOMENTS *
ICIC X = A VECTOR OF VARIABLES BEING ESTIMATED **
** (I.E. THE "Am AND "B' PAIRS) IC

INTEGER CC,EQS,IER,ITMAX,NSIG,FLAG,M,N,P,Q,
+ TYPEGUESSNUM,I,J,K,L,T,U,V,W

REAL FNORM,PAR(O:16),WK(418),X(10O)F'AIR(400,2),
+ DEV(4000),DELTAXTESTSTART1,START2,ANSWER

ICIC WK IS A WORK VECTOR WHOSE SIZE IS IC
** DEFINED BY THE FOLLOWING FORMULA: IC
ICIC SIZE = (EQS/2)*((3*EQS)+15) IC

EXTERNAL FCNCOMPIS
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S7 - - 7 7 - -

ALL VAHIATBLES ARF INITT'I. ZEI.

READ (8,*) PAR(O).PAR(1),PAR'2),PAR(3),F'AR(4),
+ TYPE,GUESSNUM

FLAG=PAR(O)
M=F'AR ( 1 )

N=F'AR(2)

P=PFAR(3)
Q=PAR(4)
E0S=2*(P+Q)

4 NSIG=5
ITMAX=200

,4

S* THE INPUT PARAMETERS OF FI...AGM,NPF', AN' 0 **
ARE CHECKIEDI AGAINST SOME CONDITIONS. ,*K

IF ((FLAG.NE.0).AND.(FLAG.NE.L)) THEN
PRINT *,' FLAG MUST BE EITHER 0 OR 1.'
GO T3 999

ELSEIF ((M.GT.0).OR.(M.LT.0)) THEN
PRINT *,' M MUST BE BETWEEN 0 AND 0, INCLUSIVE.'
GO TO 999

ELSEIF ((N.GT.P).OR.(N.LTO)) THEN
PRINT W,' N MUST BE BETWEEN 0 AND F, INCLUSIVE.'
GO TO 999

ELSEIF (((P+0).GT.5).OR.((P+Q).LT.1)) THEN
PRINT ,' (P+Q) MUST BE BETWEEN 1 AND 5.'

GO TO 999
ENDIF

** THE MOMENTS ARE READ IN FROM TAF'f 8. IF X*
** ONLY RAW DATA ARE AVAILABLE, THEN THE **
**S MOMENTS ARE CALCULATED. ,*
a, * 11

,

'a

'a



1N

IF (TYPE.EQ.0) THEN
IF (NUM.NEo(EQS+2)) THEN

PRINT * ,' THE NUMBER OF MOMENTS .1S INCOI:RECT.'
GO TO 999

ENDIF
READ (8,*)(PAR(I+4),I=IEQS+2)

ELSEIF (TYPE.EQ.1) THEN
IF (NUM.LT.20) THEN

PRINT ,' FEWER THAN 20 DATA POINTS WILL'
PRINT *,' NOT PRODUCE ACCURATE MOMENTS.'
0O TO 999

ENDIF
READ (8,*)(DEV(J),J=lNUM)
CALL MOMI(EQS,FL.)GNUMDlEVPFR)

ELSEIF ((TYPE.EQ.2).OR.(TYF'E.EQ.3)) THEN
IF (NUM.LT.20) THEN

PRINT *,' FEWER THAN 20 DATA POINTS WILL'
PRINT *,' NOT PRODUCE ACCURATE MOMENTS.'
GO TO 999

ENDIF
READ (8,*)((PAIR(K,L),L=I,2) ,K=I,NUM)
DELTAX=PAIR(2,1)-F'AIR(1,1)
DO 5 J=3,NUM,1

TEST=PAIR(J,1)- PAIR(J-1,1)
IF (ABS(TEST-DELTAX).GT. (.5E-5)) THEN

PRINT ,' DELTA X MUST BE THE SAME.'
G0 TO 999

ENDIF
5 CONTINUE

IF (TYPE.EQ.2) THEN
CALL MOM3(EQS,FL.AG,NUM,PAIR,1.0,F'AR)

ELSEIF ('TYPE.EG*3) THEN
CALL MOM3(EQS,FIAG,NUM,PAIR,DELTAX,F AR)
IF (FLAG.EQ.O) THEN

PRINT *,' THE ZEROTH MOMENT IS ',PAR(5)
PRINT ,' IF YOU KNOW TlHE DATA IS FROM A'
PRINT ,' STATISTICAL DISTRIBUTION ANTI WANT'
PRINT *,' THE ZEROTH MOMENT TO EQUAL ONE,'
PRINT ),' THEN TYPE A ONE.'
PRINT *,' OTHERWISE, TYF'E ANY OTHER NUMBER.'
READ *,ANSWER
IF (ANSWER.EQ.I.0) THEN
PAR(5)=1.0

ENDIF
ENUIF

ENDIF
ELSE

PRINT *,' TYPE MUST BE EITHER 0,1,2, OR 3.'
GO TO 999

ENDIF
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** HEINITIAL GUESS 'TO THE VIECTOR X 13 REAL' IN,
& ** DEFAULT VALUES ARE AVAILABLE WHICH ENSURE THE *

CONVERGENCE CONDITIONS A1RE SATISFIED INITIALLY *
BY MAKING ED IN SUBROUTINE CHKR GREATER THAN 0. *

IF (GUESS*EQ*0) THEN
READ' (B,*)(X(I),I=1,EQS)

% ELSEIF (GUESS.EQ.1) THEN
START 1=#7654321
START2=#87654321
DO 10 T=1,2*M-1,2

X(T )=STAR'T'
X(T+1 )=START2
START 1=STARTl-. 1
START2=START2-ol

10 CONTINUE
DO 20 U=T,2*(M+N)-lp2

X(U)=START1
*-.~* ~X(U+1 )=START2

START1=START1-. 1
START2=START2-o*

20 CONTINUE
DO 30 V=U,2*(Q+N)-1,2

X (V )=STARTI.
X(V+1 )=START2
STAR*T1=START1-. 1
START2=START2-.*1

30 CONTINUE
DO 40 W=V,2:X(F+Q)-1,2

X(W)=STARTI
X(W+1 )=START2
START1=STARTI-o1
START2=START2-.*1

40 CONTINUE
ELSE

* PRINT *,' VARIABLE GUESS MUST-BEE EITHER 0 OR 1.'
GO TO 999

ENDIF

OV
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*,* THE INIVIAL GUESS OF THE VECTOR X. IS *2
*2 CHECKED AGAINST THE CONVERGENCE CONDITIONS. **

CALL CHKR(EQS,M,N,P,OX,CC)
IF (CC*EO.O) THEN

'S PRINT *,' A NEW INITIAL GUESS IS NEEDED.'
GO TO 999

n, ENDIF
". PRINT ,,' THE INITIAL GUESS MEETS THE'

PRINT *,,' CONVERGENCE CONDITIONS.'

?t::** **
--* ZSPOW IS AN IMSL ROUTINE WHICH USES *,

"""~* POWELL'S METHOD TO APPROXIMATE THE *
""-* ROOTS OF A SYSTEM OF EQUATIONS. **

CALL ZSF'OW(FCNNSIG,EQS,ITMAX,PAR,X,FNORM,WK,IER)

2* THE FINAL ESTIMATE OF THE VECTOR X IS *
** CHECKED AGAINST THE CONVERGENCE CONDITIONS. *

CALL CHKR(EQS,M,N,F,Q,X,CC>
IF (CC.EQ.O) THEN

PRINT *,' THE FINAL ESTIMATE OF THE X VECTOR DOES'
'A . PRINT , NOT MEET THE CONVERGENCE CONDITIONS.'

GO TO 998
ENDIF
PRINT *,' THE FINAL ESTIMATE OF THE X VECTOR MEETS'
PRINT ,' THE CONVERGENCE CONDITIONS.'

*2 IF THE INITIAL GUESS OF THE X VECTOR
N. ** MEETS THE CONVERGENCE CONDITIONS, THEN 2*

** THE RESULTS OF ZSPOW ARE OUTPUT TO TARE 2. *

998 CALL RESULT(EQS,FLAG,M,N,PF,Q,X,PAR,FNORM)
Go TO 1000

4. 121
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A** LL ERRORS, EXCEPT A FINAI... ESTIMATIE T1;- T T *1:A
A. . ** DOES NOT MEET CONVERGENCE CONDITIONS) ARE **

..- * ROUTED TO THIS LINE WHICH ENDS THL **
.*,. : EXECUTION OF THE PROGRAM. *

************************* **

4. 999 PRINT *,' THE PROGRAM WILL BE STOF'PED BECAUSI'
PRINT *,' OF THIS ERROR.'

1000 CONTINUE
END

4

12
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4% - : P. - - -~. . .

SUBP*:UTIM[ FCN ( XF, ES jF'R)

THIS SUBROUTINE IS NEEDED TO D:EFINE THE *
** SYSTEM 01--: NONLINEAIR- EQUATIONS. *

INTEGER EQSI,FLAG,MNtF,Q
.~REAL IOFS(13),FPAk(0":OS+6).F(EQS),X(EUS)

FLAG=FPAR(O)
* M=PAR ( 1 )

N=PAR(2)
P=PAR (3)
Q=PAR(4)

CALL COMPIS(EQS,FtI.AGM,N,F,l 1 X-,I[OF'S)

DO 10 I=1,EQSY1
F(I)=(PAR(1+4)*FPAF:%(I+ 6)*IOFS(I+1+FLIAG)**2)/

+ (PAR(I+5)**2*IOFS(I+FLAG)*IOFS(I+2+FLAG)) -1.0

10 CONTINUE

RETURN
END

-
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SUE4IOU I NF NSU.r Q3F OM N. -0.X I ,NCr:

THIS SUB4ROUTINE PRINTS THE SOLUTION OF *
** THE SYSTEM OF NONLINI::AtR EQUATIONS. *

- ** C AND K ARE VARIABLES ESTIMATED FROM X. *

INTEGER EGS, FLAG, M, N, P, a, rU, V,W, CNTA, CNr
REAL IOFS(13),X(EQS),PF'tRO:#EQS+6),FNR1,C,K

CNTA=0
CNTB=0

WRITE(2,'(' RESULTS 01:7 ZSF'OW -'

WRITE(2,'(' NUMERATOR:')')
DO 10 T=1,2*M-1,2

CNTB=CNTB+l F 5 1) CT3XT

WRITE(2,' (0 IB I,=F~.8 NET
a>10 CONTINUE

DO 20 U=TP2*(M+N)-1 ,2
CNTA=CNTA+1
WRITE(2,'(1 SMALLA( 4I1, )= ,F2t, 18)' )CNTArX(U)
WRITE(2, /(* IA 1,) F5 8')NhXU1

20 CONTINUE
WRITL(2,'U* DENOMINATOR:"'
DO 30 V=U,2*(Q+N)-1,

CNTE4=CNTB+l
WRITE(2,'(* SMAL..1i( ',I,")=*,F25.18) /)CN*TBX(V)
WRI'TE(2v '(' B*IGE4( , :.1, N)=PF25.18)')CN'TBX(V+i)

30 CONTINUE
DO 40 W=V,2*(P+Q)-1,

CNTA=CNTA+l
N' WRITE(2, '(* SMAI..A( 1,11, N)=N PF'25.i8) ')CN'TA,X(W)

WRITE(2,' U BG(()*,23.8 C4AXW1
40 CONTINUE

CALL COMPIS(EQS,FL.AG,M,N,FP,QX, IOFS)

C=(PAR(6-FLAG)*IOFS(3) )/(FPAR(7-FLAG)*IOI:*S(2.l))

K=PAR (6-FLAG) *C**2/IOFS (2)

WRITE(2,'(/,' VALUES OF K & C ARE:')')
WRITE(2,'U* K=*,F25*18)')K

RETURN
END
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SUB~ROUTINE C()MPI3l(l'-.I:SLA,M,N,Po, IF 173)

** THIS SUFBROUTTNE COMPUTES THE VECTOR I(S): *
** PRODUCTS AND QUOTIENrs O GAMMA FUNCTIONS FOR *
** A GIVEN VALUE OF S. *

INTEGER EQIS,FLA..'G,MNP.,Q,RS.Tv,U,W
REAL X(EQS) ,IOFS(13) ,t)MMA,BNUM,1rEtEN,ANUM,A~rEEN

L10 5 R=1,13,1
IOFS(R)=0.O

5 CONTINUE

DO0 50 S=1+FLAG,EQS+2+FLAG,1
E4NUM=1 to
EBrEN=i .0
ANIJM=1 .0
ALIEN=1 .0
DO 10 T=1,2*M-i,2

BNUM=.6NUM*GAMMA(X(T)+O*X(T+1))
10 CONTINUE

110 20 U=T,2*(M+N)-1,2
ANUM=ANUM*(3AMMA(1-X(U)-S*X(U+ 1))

20 CONTINUE
DO0 30 V=UP2*(Q+N)-1,2

BtIEN=EBDENl*GAMMA (1-X (V) -S*X (V+ 1))
30 CONTINUE

DO 40 W=V,2*(F+Q)-1,2
ALEN=ADF-N*GAMMA( W+S*X(W+I))

40 CONTINUE
IOFS(S)=(BNUJM*ANUM)/(BENl~*AII .N)

50 CONTINUE

RETURN
END
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SUBROUYTINL CHKR CEQI:.,M, N4, F-, 0 ,CC)

** THIS SUBROUTINE CHECKS THE CONVERGENCE *
** CONDITIONS FOR THE INITIAL GUESS AND THE *

FNLESTIMATE OFTHE X VECTOR. *

INTEGER CCvEOQS.M,N,7 P,Q,T,UJ,V,W
REAL SUJMSRN, SUMBE4N SUMSAN ,SUMBAN , SUJISBI:' *SUMFIE4I:I,.I

+ SUMSAD , SUMJ3AE v X (EQS) ,TEST 1. 'T EST 2 WLOW, WF17 !AH:
+ EWL0W,EWH.GH,LIE,L

SUMSBN=0.O
SUMBBN=O0

SUMSAN:=0.0

SUME4AN=0*0
SUMSBD=0.0
sumBBrD=o.o
SUMSAD::0 * 0
SUiMBEAD=0.*0
WL-OW=-10000#*0
WHIGH= 10000.0

DO 10 T=1,.2*M-1,2
SUMSBN=SUMSBAN+X('T)
SUMBBN=SUMB-BN+Xv(T+.)
TEST1=-X(T)/X(T+l)
IF ( (TESTI-WI.OW) .GT. ( *5E-5$)) THEN

WLOW=TEST 1
ENDIF

A10 CONTINUE
A DO 20 U=T,2*(M+N)-i 2

SUMSAN=SIJMSiN+X (U)
* - SIMBAN=SIJMBAN+X~ ( U+t)

TEST2=(l-X(t.) )/X(U+l)
IF ( (TEST2-WI-IIGH-) *'T'. (-25E- ) ) 1111N
WHIGH=TEST2

ENDI F
20 CONTINUE

DO 30 V=U,2*((fl+N)-1 ,2
SIJMSB D= SUMS BD+ X (V )
SUMBBII=SUME4BD+X (V+1)

30 CONTINUE
DO 40 W=V2*(F'+fl)-I. ,2

SUMSAEI=SUMSAt'+X(14)
SUME4AlLhsUMJ3Af+X( W+1)

* 40 CONTINlUE
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tI=S UM RA N+ S U il BN-S UM EA I- S tJ M.BR D
E= ( SUMI AN+SLJr1IfAD) - C SWJMIN+SJIEit)
L= ( SIJMSBN+SIJMIaBD) - (*5*0~) - lJhAN+(.MATrI) +(

EWLOW=E*WLOW
EWHIGH=*WHIGI-i

IF ((WLOW-WHIGH).LT*(-.5E-5)) THEN
IF (1IGT.(.5E-5)) THEN

CC= 1
ELSEIF TDL.--~ ) THE11N

Cc=o
PRINT *,' CASE 5'

ELSEIF ((AE4S(D) .LE. ( . E-5) ).ANL'i (E.LT. (-.t5E-5))Z) THEN
IF ((L-EWl-OW).L-T.(-.5E-5)) THEN

cc=1
ELSEIF ( (L-EWLOW) *GT. ( .51i-5) ) THEN

cc=o
PRINT *,' CASE 1'

ELSE
CC= 1

END IF
ELSEIF ((ARS(ri).L-E.(.5E-5)).ANEI.(E.GT,(.51E--5))) THEN

IF ((L-EWHIGH).LT*(-.SE-5)) THEN
CC~ 1

ELSEIF ((L-EWI IGH).GT.(.5E-5)) THEN
.4 cC=o

PRINT *?' CASE 2
ELSE

CC= 1
ENDIF

ELSEIF ((ABS(tI) .LE. C 5E-5) ) AND. (ABS(E) .LE ( ,5E-5)))
.4.. + THEN

IF (L.LT*(-.5E-5)) THEN
CC= 1

ELSEIF (L*GT.(.51E--5)) THEN
cc=o
PRINT *,' CASE 3'

ELSE
cc=o
PRINT *,' CASE 4'

ENDIF
E ND'IF

ELSE
Cc=o
PRINT *P' CASE 6'
PRINT *'NO OMEGA IS POSSIBLE."

E NDIF

RETURN
ENDI
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V ~~~~SUBROUTINC M0M'.(EP3,-A ,NN 'WP

*k3*l w; ' * *k

** THIS SUBROUTINE GENERA'TES- THE MOMENTS FOR *
** UP TO 4000 UNIVAI:NIATE. DATA POI(VNTS. *

INTEGER COIJNTI,J,EQS,FLAG,NUM
REAL SUM,DIEV(4000) ,Pr '~i0:E OS+6)

COUNT=5

DO 20 I=FL.A)G,EQIS4-i+FLIAG,1
SUM=0.0
DO 10 J=1,NU.M,1l

SUM=SUM+DEV (.J) **.I
10 CONTINUE

SUtM =S UMi/NUll
PAR (COUNT) =sum
COUNT=COUNT+1

20 CONTINUE

RETURN
END

SUBROUTINE MOM3 (EOS, FLAG,NMUM,PAITRDELTAXPAR)

'K'K THIS SUBROUTINE GENI.RATES THE MOMENTS FOR AA
'K'K UP TO 4000 DATA PAIRS (XF(X)). *

INTEGER COUNTPIYJEO:'S,Fl-AG,NUM
REAL SUMPFAIR(4000,2) DEL-TAX,P'AHO:OEQS+ 6)

COUN'r=5

DO 20 I=FLAGEQS+1+FLAG,1
SUM=0 00
DO 10 J1,PNUM.1

SUM=SUM+PA I R(J1 v)II *PA I R(J9 2)
10 CONTINUE

SUM=SUM*DEL:*ITAX
* -' PAR (COUNT) =SUM

a COUNThCU)UNr+ 1
*20 CONTINUE

RETURN
EN B 128
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